Home
Class 12
MATHS
If A=[(cosx,-sinx),(sinx,cosx)], then AA...

If `A=[(cosx,-sinx),(sinx,cosx)]`, then `A``A^(T) `is

A

Zero matrix

B

`I_(2)`

C

`[(1,1),(1,1)]`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the product of the matrix \( A \) and its transpose \( A^T \). Let's go through the steps systematically. ### Step 1: Write down the matrix \( A \) The matrix \( A \) is given as: \[ A = \begin{pmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{pmatrix} \] ### Step 2: Find the transpose of matrix \( A \) The transpose of a matrix is obtained by interchanging its rows and columns. Thus, the transpose \( A^T \) is: \[ A^T = \begin{pmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{pmatrix} \] ### Step 3: Multiply \( A \) and \( A^T \) Now we need to calculate the product \( A A^T \): \[ A A^T = \begin{pmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{pmatrix} \begin{pmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{pmatrix} \] To multiply these matrices, we use the formula for matrix multiplication, which involves taking the dot product of rows of the first matrix with columns of the second matrix. #### Calculation of each element: 1. **First row, first column**: \[ (\cos x)(\cos x) + (-\sin x)(-\sin x) = \cos^2 x + \sin^2 x = 1 \] 2. **First row, second column**: \[ (\cos x)(\sin x) + (-\sin x)(\cos x) = \cos x \sin x - \sin x \cos x = 0 \] 3. **Second row, first column**: \[ (\sin x)(\cos x) + (\cos x)(-\sin x) = \sin x \cos x - \sin x \cos x = 0 \] 4. **Second row, second column**: \[ (\sin x)(\sin x) + (\cos x)(\cos x) = \sin^2 x + \cos^2 x = 1 \] ### Step 4: Write the resulting matrix Putting all the calculated elements together, we get: \[ A A^T = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] This is the identity matrix \( I_2 \). ### Final Answer Thus, the result of \( A A^T \) is: \[ A A^T = I_2 \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    DISHA PUBLICATION|Exercise Exercise 2: Concept Applicator|30 Videos
  • MATRICES

    DISHA PUBLICATION|Exercise Exercise 1: Concept Builder (Topic 2)|23 Videos
  • MATHEMATICAL REASONING

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    DISHA PUBLICATION|Exercise Exercise-2 Concept Applicator|20 Videos

Similar Questions

Explore conceptually related problems

|[cosx,-sinx],[sinx,cosx]|

A=|{:(cosx,-sinx),(sinx,cosx):}| , then show that (A^(-1))^(-1)=A.

int(2cosx-sinx)/(3+2sinx+cosx)dx

If f(x)=|(cosx,cosx,sinx),(-cosx,cosx,-sinx),(sinx,sinx,cosx)| , then find its determinant

int(sinx)/(sinx-cosx)dx=

intcosx/(sinx+cosx)dx

((sinx - cosx)/(sinx + cosx))

int(sinx)/((sinx-cosx))dx=?

int(cosx)/(sinx+cosx)dx=

if y=(sinx+cosx)/(sinx-cosx) , then (dy)/(dx) at x=0 is equal to

DISHA PUBLICATION-MATRICES-Exercise 1: Concept Builder (Topic 3)
  1. If A and B are square matrices of the same order and if A =A^(T),B=B^(...

    Text Solution

    |

  2. Which of the following is/are correct ?

    Text Solution

    |

  3. If A=[(cosx,-sinx),(sinx,cosx)], then AA^(T) is

    Text Solution

    |

  4. If A is symmetric as well as skew-symmetric matrix, then A is

    Text Solution

    |

  5. Which of the following is correct?

    Text Solution

    |

  6. The element a(ij) of square matrix is given by a(ij)=(i+j)(i-j) then m...

    Text Solution

    |

  7. Let A =[(1,-1,1),(2,1,-3),(1,1,1)] and 10B=[(4,2,2),(-5,0,alpha),(...

    Text Solution

    |

  8. Consider the matrix A=[(4,1),(1,5)] on applying elementary row operati...

    Text Solution

    |

  9. if A and B are matrices of same order, then (AB'-BA') is a 1) null mat...

    Text Solution

    |

  10. If A^2-A +I = 0, then the inverse of A is: (A) A+I (B) A (C) ...

    Text Solution

    |

  11. For any square matrix A,A A^(T) is a

    Text Solution

    |

  12. Which one of the following is wrong?

    Text Solution

    |

  13. If A is a 3xx3 matrix and B is a matrix such that A^TB and BA^(T) are ...

    Text Solution

    |

  14. h1. If C is skew-symmetric matrix of order n and X is nxx1 column matr...

    Text Solution

    |

  15. If A is a 3xx3 skew-symmetric matrix, then trace of A is equal to -1 b...

    Text Solution

    |

  16. Orthogonal matrix

    Text Solution

    |

  17. A = [[2,-1],[-7,4]] & B =[[4,1],[7,2]] then B^TA^T is :

    Text Solution

    |

  18. If {:A=[(costheta,-sintheta),(sintheta,costheta)]:},"then" A^T+A=I2, i...

    Text Solution

    |

  19. Using elementary row transformations, find the inverse of the matrix A...

    Text Solution

    |

  20. Consider the matrices A=[(4,6,-1),(3,0,2),(1,-2,5)], B=[(2,4),(0,1),...

    Text Solution

    |