Home
Class 12
MATHS
If A=[(2,1),(0,x)] and A^(-1)=[(1/2,1/6)...

If `A=[(2,1),(0,x)]` and `A^(-1)=[(1/2,1/6),(0,1/x)]`, then the value of `x` is equal to

A

`-3`

B

3

C

-2

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( x \) given the matrix \( A = \begin{pmatrix} 2 & 1 \\ 0 & x \end{pmatrix} \) and its inverse \( A^{-1} = \begin{pmatrix} \frac{1}{2} & \frac{1}{6} \\ 0 & \frac{1}{x} \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the determinant of matrix \( A \) The determinant of a 2x2 matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by \( ad - bc \). For matrix \( A \): \[ \text{det}(A) = (2)(x) - (1)(0) = 2x \] ### Step 2: Use the formula for the inverse of a matrix The inverse of a 2x2 matrix \( A \) can be calculated using the formula: \[ A^{-1} = \frac{1}{\text{det}(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] Substituting the values from matrix \( A \): \[ A^{-1} = \frac{1}{2x} \begin{pmatrix} x & -1 \\ 0 & 2 \end{pmatrix} \] ### Step 3: Simplify the expression for \( A^{-1} \) Now, simplifying the expression: \[ A^{-1} = \begin{pmatrix} \frac{x}{2x} & \frac{-1}{2x} \\ 0 & \frac{2}{2x} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{-1}{2x} \\ 0 & \frac{1}{x} \end{pmatrix} \] ### Step 4: Set the simplified \( A^{-1} \) equal to the given \( A^{-1} \) We know that: \[ A^{-1} = \begin{pmatrix} \frac{1}{2} & \frac{1}{6} \\ 0 & \frac{1}{x} \end{pmatrix} \] Now, we can equate the corresponding elements of the two matrices: 1. From the first element: \( \frac{1}{2} = \frac{1}{2} \) (this is already satisfied) 2. From the second element: \( \frac{-1}{2x} = \frac{1}{6} \) 3. From the last element: \( \frac{1}{x} = \frac{1}{x} \) (this is also satisfied) ### Step 5: Solve for \( x \) From the second element: \[ \frac{-1}{2x} = \frac{1}{6} \] Cross-multiplying gives: \[ -6 = 2x \implies x = -3 \] ### Final Answer Thus, the value of \( x \) is: \[ \boxed{-3} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    DISHA PUBLICATION|Exercise Exercise 2: Concept Applicator|30 Videos
  • MATRICES

    DISHA PUBLICATION|Exercise Exercise 1: Concept Builder (Topic 2)|23 Videos
  • MATHEMATICAL REASONING

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    DISHA PUBLICATION|Exercise Exercise-2 Concept Applicator|20 Videos

Similar Questions

Explore conceptually related problems

If A=[(2x,0),(x,x)] and A^(-1)=[(1,0),(-1,2)] then x equals to

If A=[{:(2x,0),(x,x):}]and A^(-1)=[{:(1,0),(-1,2):}] , then what is the value of x ?

If [(1,2,1)][(1,2,0),(2,0,1),(1,0,2)] [(0),(2),(x)] = 0 , then the value of x is

If tan^(-1)(x+2)+tan^(-1)(x-2)-tan^(-1)((1)/(2))=0 , them one of the values of x is equal to

If x^2+1/x^2=7, then the value of x^3+1/x^3 Where x>0 is equal to:

If X+{:[(2,1),(6,1)]:}={:[(1,1),(0,1)]:} then 'X' is equal to

If f (x)=((x+1)^(7)sqrt(1+x ^(2)))/((x^(2) -x+1)^(6)), then the value of f'(0) is equal to:

DISHA PUBLICATION-MATRICES-Exercise 1: Concept Builder (Topic 3)
  1. If A=[(cosx,-sinx),(sinx,cosx)], then AA^(T) is

    Text Solution

    |

  2. If A is symmetric as well as skew-symmetric matrix, then A is

    Text Solution

    |

  3. Which of the following is correct?

    Text Solution

    |

  4. The element a(ij) of square matrix is given by a(ij)=(i+j)(i-j) then m...

    Text Solution

    |

  5. Let A =[(1,-1,1),(2,1,-3),(1,1,1)] and 10B=[(4,2,2),(-5,0,alpha),(...

    Text Solution

    |

  6. Consider the matrix A=[(4,1),(1,5)] on applying elementary row operati...

    Text Solution

    |

  7. if A and B are matrices of same order, then (AB'-BA') is a 1) null mat...

    Text Solution

    |

  8. If A^2-A +I = 0, then the inverse of A is: (A) A+I (B) A (C) ...

    Text Solution

    |

  9. For any square matrix A,A A^(T) is a

    Text Solution

    |

  10. Which one of the following is wrong?

    Text Solution

    |

  11. If A is a 3xx3 matrix and B is a matrix such that A^TB and BA^(T) are ...

    Text Solution

    |

  12. h1. If C is skew-symmetric matrix of order n and X is nxx1 column matr...

    Text Solution

    |

  13. If A is a 3xx3 skew-symmetric matrix, then trace of A is equal to -1 b...

    Text Solution

    |

  14. Orthogonal matrix

    Text Solution

    |

  15. A = [[2,-1],[-7,4]] & B =[[4,1],[7,2]] then B^TA^T is :

    Text Solution

    |

  16. If {:A=[(costheta,-sintheta),(sintheta,costheta)]:},"then" A^T+A=I2, i...

    Text Solution

    |

  17. Using elementary row transformations, find the inverse of the matrix A...

    Text Solution

    |

  18. Consider the matrices A=[(4,6,-1),(3,0,2),(1,-2,5)], B=[(2,4),(0,1),...

    Text Solution

    |

  19. If A=[(2,1),(0,x)] and A^(-1)=[(1/2,1/6),(0,1/x)], then the value of x...

    Text Solution

    |

  20. If P is a two-rowed matrix satisfying P' = P^(-1), then P can be

    Text Solution

    |