Home
Class 12
MATHS
For k=1/sqrt(50), the value of a, b, c s...

For `k=1/sqrt(50)`, the value of a, b, c such that PP' = I, where `P=[(2//3,3k,a),(-1//3,-4k,b),(2//3,-5k,c)]` is

A

`pm13/(5sqrt(2)),pm16/(5sqrt(2)),pm1/(3sqrt(2))`

B

`pm3/(5sqrt(2)),pm2/(5sqrt(2)),pm1/(3sqrt(2))`

C

`pm21/(5sqrt(2)),pm19/(5sqrt(2)),pm1/(3sqrt(2))`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \(a\), \(b\), and \(c\) such that the product of matrix \(P\) and its transpose \(P'\) equals the identity matrix \(I\). Given: \[ k = \frac{1}{\sqrt{50}} \] \[ P = \begin{pmatrix} \frac{2}{3} & 3k & a \\ -\frac{1}{3} & -4k & b \\ \frac{2}{3} & -5k & c \end{pmatrix} \] ### Step 1: Calculate \(P'\) The transpose of matrix \(P\) is obtained by interchanging rows and columns: \[ P' = \begin{pmatrix} \frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\ 3k & -4k & -5k \\ a & b & c \end{pmatrix} \] ### Step 2: Calculate \(PP'\) Now, we will multiply \(P\) and \(P'\): \[ PP' = P \cdot P' = \begin{pmatrix} \frac{2}{3} & 3k & a \\ -\frac{1}{3} & -4k & b \\ \frac{2}{3} & -5k & c \end{pmatrix} \cdot \begin{pmatrix} \frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\ 3k & -4k & -5k \\ a & b & c \end{pmatrix} \] ### Step 3: Calculate the elements of \(PP'\) 1. **Element (1,1)**: \[ \left(\frac{2}{3} \cdot \frac{2}{3}\right) + (3k \cdot 3k) + (a \cdot a) = \frac{4}{9} + 9k^2 + a^2 \] Set this equal to 1: \[ \frac{4}{9} + 9k^2 + a^2 = 1 \] 2. **Element (2,2)**: \[ \left(-\frac{1}{3} \cdot -\frac{1}{3}\right) + (-4k \cdot -4k) + (b \cdot b) = \frac{1}{9} + 16k^2 + b^2 \] Set this equal to 1: \[ \frac{1}{9} + 16k^2 + b^2 = 1 \] 3. **Element (3,3)**: \[ \left(\frac{2}{3} \cdot \frac{2}{3}\right) + (-5k \cdot -5k) + (c \cdot c) = \frac{4}{9} + 25k^2 + c^2 \] Set this equal to 1: \[ \frac{4}{9} + 25k^2 + c^2 = 1 \] ### Step 4: Substitute \(k^2\) Since \(k = \frac{1}{\sqrt{50}}\), we have: \[ k^2 = \frac{1}{50} \] Now, substitute \(k^2\) into the equations. 1. For \(a\): \[ \frac{4}{9} + 9 \cdot \frac{1}{50} + a^2 = 1 \] \[ \frac{4}{9} + \frac{9}{50} + a^2 = 1 \] \[ a^2 = 1 - \left(\frac{4}{9} + \frac{9}{50}\right) \] Calculate \(\frac{4}{9} + \frac{9}{50}\): \[ \text{LCM of } 9 \text{ and } 50 = 450 \] \[ \frac{4}{9} = \frac{200}{450}, \quad \frac{9}{50} = \frac{81}{450} \] \[ \frac{4}{9} + \frac{9}{50} = \frac{200 + 81}{450} = \frac{281}{450} \] \[ a^2 = 1 - \frac{281}{450} = \frac{450 - 281}{450} = \frac{169}{450} \] \[ a = \pm \frac{13}{\sqrt{450}} = \pm \frac{13}{15\sqrt{2}} \] 2. For \(b\): \[ \frac{1}{9} + 16 \cdot \frac{1}{50} + b^2 = 1 \] \[ b^2 = 1 - \left(\frac{1}{9} + \frac{16}{50}\right) \] Calculate \(\frac{1}{9} + \frac{16}{50}\): \[ \frac{1}{9} = \frac{50}{450}, \quad \frac{16}{50} = \frac{144}{450} \] \[ b^2 = 1 - \frac{50 + 144}{450} = 1 - \frac{194}{450} = \frac{256}{450} \] \[ b = \pm \frac{16}{\sqrt{450}} = \pm \frac{16}{15\sqrt{2}} \] 3. For \(c\): \[ \frac{4}{9} + 25 \cdot \frac{1}{50} + c^2 = 1 \] \[ c^2 = 1 - \left(\frac{4}{9} + \frac{25}{50}\right) \] Calculate \(\frac{4}{9} + \frac{25}{50}\): \[ \frac{25}{50} = \frac{225}{450} \] \[ c^2 = 1 - \left(\frac{200 + 225}{450}\right) = 1 - \frac{425}{450} = \frac{25}{450} \] \[ c = \pm \frac{5}{\sqrt{450}} = \pm \frac{5}{15\sqrt{2}} \] ### Final Values Thus, the values of \(a\), \(b\), and \(c\) are: \[ a = \pm \frac{13}{15\sqrt{2}}, \quad b = \pm \frac{16}{15\sqrt{2}}, \quad c = \pm \frac{5}{15\sqrt{2}} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    DISHA PUBLICATION|Exercise Exercise 1: Concept Builder (Topic 3)|23 Videos
  • MATHEMATICAL REASONING

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    DISHA PUBLICATION|Exercise Exercise-2 Concept Applicator|20 Videos

Similar Questions

Explore conceptually related problems

Find the value of k for which the points A(k+1, 2k), B(3k, 2k +3) and C(5k-1, 5k) are collinear.

Find the value of k , if lines AB and CD are perpendicular , where A = (4,5) , B = (k+ 2 , 3), C = (-3,2) and D (2,4).

Find the values of k, if the points A (k+1,2k) ,B (3k,2k+3) and C (5k-1,5k) are collinear.

The value of k for which the points A (1, 0, 3), B(-1, 3, 4), C(1, 2, 1) and D(k, 2, 5) are coplanar, are

Find the value of k for which the points A(-1, 3), B(2, k) and C(5, -1) are collinear.

(i) If the points (1,4),(3,-2)and (k,1)B(3k,2k+3)andC(5k-1,5k) are collinear, fine the value of k. (ii) If the points A(k+1,2k),B(3k,2k+3),B(3k,2k+3)andC(5k-1,5k) are collinear, then show that x + y =2.

Let A and B are two matrices of same order i.e. where A=[(1,-3,2),(2,K,5),(4,2,1)], B=[(2,1,3),(4,2,4),(3,3,5)] If C = A – B and tr (C) = 0 then K is equal to-

For what value of k will the consecutive terms 2k + 1, 3k+3 and 5k-1 form an AP?

For what values of k are the points A(8, 1), B(3, -2k) and C(k, -5) collinear.

Find the value of k, if the points A(7,-2),B(5,1) and C(3,2k) are collinear.

DISHA PUBLICATION-MATRICES-Exercise 2: Concept Applicator
  1. If A is a square matrix of order m, then the matrix B of same order is...

    Text Solution

    |

  2. If A1, A2, , A(2n-1)a r en skew-symmetric matrices of same order, the...

    Text Solution

    |

  3. For k=1/sqrt(50), the value of a, b, c such that PP' = I, where P=[(2/...

    Text Solution

    |

  4. IfA^(k)= 0 (Ais nilpotent with index k), (I-A)^(p)=I+A+A^(2)+. . .+A^(...

    Text Solution

    |

  5. If A and B are two square matrices such that B=-A^(-1)BA, then (A+B)^(...

    Text Solution

    |

  6. If A=[(1,-1),(2,-1)] and B=[(1,a),(4,b)] and (A+B)^(2)=A^(2)+B^(2). ...

    Text Solution

    |

  7. If A is a square matrix such that A A^T=I=A^TA, then A is

    Text Solution

    |

  8. If Aa n dB are symmetric matrices of the same order and X=A B+B Aa n d...

    Text Solution

    |

  9. [{:(2x+y,4x),(5x-7,4x):}]=[{:(7,7y-13),(y,x+6):}] then the value of x,...

    Text Solution

    |

  10. Given that [(1,omega,omega^(2)),(omega,omega^(2),1),(omega^(2),1,omega...

    Text Solution

    |

  11. If {:A=[(alpha,0),(1,1)]andB=[(1,0),(5,1)]:}, then te value of alpha f...

    Text Solution

    |

  12. [[i,0,0],[0,i,0],[0,0,i]] then A^(4n+1) =.... n in N

    Text Solution

    |

  13. The matrix A=[0-5 8 5 0 12-8-12 0] is a (a) diagonal matrix (b) symmet...

    Text Solution

    |

  14. If A=[(alpha,0),(1,1)] and B=[(9,a),(b,c)] and A^(2)=B, then the value...

    Text Solution

    |

  15. Find the value of k so that A^2=8A+kI where A=[(1,0),(-1,7)].

    Text Solution

    |

  16. A square matrix P satisfies P^(2)=I-P where I is identity matrix. If P...

    Text Solution

    |

  17. If A(alpha)=[(cosalpha,-sinalpha),(sinalpha,cosalpha)], then

    Text Solution

    |

  18. If B is an idempotent matrix, and A=I-B, then

    Text Solution

    |

  19. If B=[(3,4),(4,3)] and C=[(3,-4),(-2,3)] and X=BC, find X^(n)

    Text Solution

    |

  20. If A=[(1,0),(1//2,1)], A^(400) is equal to

    Text Solution

    |