Home
Class 12
MATHS
Given that [(1,omega,omega^(2)),(omega,o...

Given that `[(1,omega,omega^(2)),(omega,omega^(2),1),(omega^(2),1,omega)][(k,1,1),(1,1,1),(1,1,1)]=[(0,0,0),(0,0,0),(0,0,0)]` then k=

A

6

B

1

C

8

D

9

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to multiply the two given matrices and set the resulting matrix equal to the null matrix. Let's denote the matrices as follows: Let \( A = \begin{pmatrix} 1 & \omega & \omega^2 \\ \omega & \omega^2 & 1 \\ \omega^2 & 1 & \omega \end{pmatrix} \) and \( B = \begin{pmatrix} k & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \). We need to find \( k \) such that: \[ A \cdot B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \] ### Step 1: Calculate the first element of the product \( A \cdot B \) The first element of the resulting matrix is calculated as follows: \[ (1 \cdot k) + (\omega \cdot 1) + (\omega^2 \cdot 1) = k + \omega + \omega^2 \] Setting this equal to 0 gives us: \[ k + \omega + \omega^2 = 0 \quad \text{(Equation 1)} \] ### Step 2: Calculate the second element of the product \( A \cdot B \) The second element of the resulting matrix is: \[ (\omega \cdot k) + (\omega^2 \cdot 1) + (1 \cdot 1) = \omega k + \omega^2 + 1 \] Setting this equal to 0 gives us: \[ \omega k + \omega^2 + 1 = 0 \quad \text{(Equation 2)} \] ### Step 3: Solve the equations From Equation 1, we have: \[ k = -(\omega + \omega^2) \] We know from the properties of the cube roots of unity that: \[ 1 + \omega + \omega^2 = 0 \implies \omega + \omega^2 = -1 \] Thus, substituting this into the expression for \( k \): \[ k = -(-1) = 1 \] ### Step 4: Verify with Equation 2 Substituting \( k = 1 \) into Equation 2: \[ \omega(1) + \omega^2 + 1 = \omega + \omega^2 + 1 = 0 \] This confirms that both equations are satisfied. ### Conclusion Thus, the value of \( k \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    DISHA PUBLICATION|Exercise Exercise 1: Concept Builder (Topic 3)|23 Videos
  • MATHEMATICAL REASONING

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    DISHA PUBLICATION|Exercise Exercise-2 Concept Applicator|20 Videos

Similar Questions

Explore conceptually related problems

|[1,omega,omega^2] , [omega, omega^2,1] , [omega^2,1,omega]|=0

|[omega+omega^(2),1,omega],[omega^(2)+1,omega^(2),1],[1+omega,omega,omega^(2)]|

If omega is cube roots of unity, prove that {[(1,omega,omega^2),(omega,omega^2,1),(omega^2,1,omega)]+[(omega,omega^2,1),(omega^2,1,omega),(omega,omega^2,1)]} [(1),(omega),(omega^2)]=[(0),(0),(0)]

{[(1,omega,omega^(2)),(omega,omega^(2),1),(omega^(2),1,omega)] + [(omega,omega^(2),1),(omega^(2),1,omega),(omega,omega^(2),1)]} [(1),(omega),(omega^(2))]

If omega is a complex cube root of unity.Show that Det[[1,omega,omega^(2)omega,omega^(2),1omega^(2),1,omega]]=0

If omega is a complex cube root of unity, then a root of the equation |(x +1,omega,omega^(2)),(omega,x + omega^(2),1),(omega^(2),1,x + omega)| = 0 , is

(1)/(1+2 omega)+(1)/(2+omega)-(1)/(1+omega)=0

Show that det ([1,omega,omega^(2)omega,omega^(2),1omega,omega^(2),1omega^(2),1,omega])=0 where omega is the non-real cube root of unity =0 where omega is

Let a sample space be: S={omega_(1),omega_(2),…..omega_(n)} . Which of the following assignments of probability to each outcome are valid? Outcomes omega_(1),omega_(2),omega_(3),omega_(4), omega_(5),omega_(6) a. 1/6,1/6,1/6,1/6,1/6,1/6 b. 1,0,0,0,0,0 c. 1/8,2/3,1/3,1/3,-1/4,-1/3 d. 1/12,1/12,1/6,1/6,1/6,3/2 e. 0.1,0.2,0.3,0.4,0.5,0.6

DISHA PUBLICATION-MATRICES-Exercise 2: Concept Applicator
  1. If A1, A2, , A(2n-1)a r en skew-symmetric matrices of same order, the...

    Text Solution

    |

  2. For k=1/sqrt(50), the value of a, b, c such that PP' = I, where P=[(2/...

    Text Solution

    |

  3. IfA^(k)= 0 (Ais nilpotent with index k), (I-A)^(p)=I+A+A^(2)+. . .+A^(...

    Text Solution

    |

  4. If A and B are two square matrices such that B=-A^(-1)BA, then (A+B)^(...

    Text Solution

    |

  5. If A=[(1,-1),(2,-1)] and B=[(1,a),(4,b)] and (A+B)^(2)=A^(2)+B^(2). ...

    Text Solution

    |

  6. If A is a square matrix such that A A^T=I=A^TA, then A is

    Text Solution

    |

  7. If Aa n dB are symmetric matrices of the same order and X=A B+B Aa n d...

    Text Solution

    |

  8. [{:(2x+y,4x),(5x-7,4x):}]=[{:(7,7y-13),(y,x+6):}] then the value of x,...

    Text Solution

    |

  9. Given that [(1,omega,omega^(2)),(omega,omega^(2),1),(omega^(2),1,omega...

    Text Solution

    |

  10. If {:A=[(alpha,0),(1,1)]andB=[(1,0),(5,1)]:}, then te value of alpha f...

    Text Solution

    |

  11. [[i,0,0],[0,i,0],[0,0,i]] then A^(4n+1) =.... n in N

    Text Solution

    |

  12. The matrix A=[0-5 8 5 0 12-8-12 0] is a (a) diagonal matrix (b) symmet...

    Text Solution

    |

  13. If A=[(alpha,0),(1,1)] and B=[(9,a),(b,c)] and A^(2)=B, then the value...

    Text Solution

    |

  14. Find the value of k so that A^2=8A+kI where A=[(1,0),(-1,7)].

    Text Solution

    |

  15. A square matrix P satisfies P^(2)=I-P where I is identity matrix. If P...

    Text Solution

    |

  16. If A(alpha)=[(cosalpha,-sinalpha),(sinalpha,cosalpha)], then

    Text Solution

    |

  17. If B is an idempotent matrix, and A=I-B, then

    Text Solution

    |

  18. If B=[(3,4),(4,3)] and C=[(3,-4),(-2,3)] and X=BC, find X^(n)

    Text Solution

    |

  19. If A=[(1,0),(1//2,1)], A^(400) is equal to

    Text Solution

    |

  20. Let A=[(0,alpha),(0,0)] and (A+I)^(50)-50A=[(a,b),(c,d)], find abc+abd...

    Text Solution

    |