Home
Class 12
MATHS
If A=[(alpha,0),(1,1)] and B=[(9,a),(b,c...

If `A=[(alpha,0),(1,1)]` and `B=[(9,a),(b,c)]` and `A^(2)=B`, then the value of `a + b + c` is

A

1 or-1

B

5 or -1

C

5 or 1

D

no real values

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a + b + c \) given the matrices \( A \) and \( B \) and the equation \( A^2 = B \). ### Step 1: Define the matrices We have: \[ A = \begin{pmatrix} \alpha & 0 \\ 1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 9 & a \\ b & c \end{pmatrix} \] ### Step 2: Calculate \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} \alpha & 0 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} \alpha & 0 \\ 1 & 1 \end{pmatrix} \] Calculating the elements of \( A^2 \): - The element at (1,1): \[ \alpha \cdot \alpha + 0 \cdot 1 = \alpha^2 \] - The element at (1,2): \[ \alpha \cdot 0 + 0 \cdot 1 = 0 \] - The element at (2,1): \[ 1 \cdot \alpha + 1 \cdot 1 = \alpha + 1 \] - The element at (2,2): \[ 1 \cdot 0 + 1 \cdot 1 = 1 \] Thus, \[ A^2 = \begin{pmatrix} \alpha^2 & 0 \\ \alpha + 1 & 1 \end{pmatrix} \] ### Step 3: Set \( A^2 \) equal to \( B \) According to the problem, we have: \[ A^2 = B \] This gives us the equation: \[ \begin{pmatrix} \alpha^2 & 0 \\ \alpha + 1 & 1 \end{pmatrix} = \begin{pmatrix} 9 & a \\ b & c \end{pmatrix} \] ### Step 4: Set up equations from the matrix equality From the equality of the matrices, we can derive the following equations: 1. \( \alpha^2 = 9 \) 2. \( 0 = a \) 3. \( \alpha + 1 = b \) 4. \( 1 = c \) ### Step 5: Solve for \( \alpha \), \( a \), \( b \), and \( c \) From the first equation \( \alpha^2 = 9 \), we find: \[ \alpha = 3 \quad \text{or} \quad \alpha = -3 \] Using \( a = 0 \) from the second equation. Now, substituting \( \alpha = 3 \) into the third equation: \[ b = 3 + 1 = 4 \] And from the fourth equation: \[ c = 1 \] Thus, we have: - \( a = 0 \) - \( b = 4 \) - \( c = 1 \) ### Step 6: Calculate \( a + b + c \) Now we can find: \[ a + b + c = 0 + 4 + 1 = 5 \] ### Final Answer The value of \( a + b + c \) is \( \boxed{5} \).
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    DISHA PUBLICATION|Exercise Exercise 1: Concept Builder (Topic 3)|23 Videos
  • MATHEMATICAL REASONING

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    DISHA PUBLICATION|Exercise Exercise-2 Concept Applicator|20 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(alpha,0),(1,1)] and B=[{:(1,0),(2,1):}] such that A^(2)=B then what is the value of alpha ?

If A=[{:(alpha,0),(1,1):}]and B=[{:(1,0),(2,1):}] such that A^(2)=B , then what is the value of alpha ?

If A = [{:(alpha, 0), (1, 1):}] " and " B = [{:(1, 0), (5, 1):}] then value of alpha for which A^(2) = B , is

Let A=[(0,alpha),(0,0)] and (A+1)^(50)=50 A=[(a,b),(c,d)] Then the value of a+b+c+d is (A) 2 (B) 1 (C) 4 (D) none of these

If a+b+c=0 and a^(2)+b^(2)+c^(2)=1, then the value of a^(4)+b^(4)+c^(4) is

If (a)/(b)+(b)/(a)=2, then the value of (a-b) is (a) 1 (b) 2(c)-1 (d) 0

If a+b+c=0&a^(2)+b^(2)+c^(2)=1 then the value of a^(4)+b^(4)+c^(4) is

DISHA PUBLICATION-MATRICES-Exercise 2: Concept Applicator
  1. If A1, A2, , A(2n-1)a r en skew-symmetric matrices of same order, the...

    Text Solution

    |

  2. For k=1/sqrt(50), the value of a, b, c such that PP' = I, where P=[(2/...

    Text Solution

    |

  3. IfA^(k)= 0 (Ais nilpotent with index k), (I-A)^(p)=I+A+A^(2)+. . .+A^(...

    Text Solution

    |

  4. If A and B are two square matrices such that B=-A^(-1)BA, then (A+B)^(...

    Text Solution

    |

  5. If A=[(1,-1),(2,-1)] and B=[(1,a),(4,b)] and (A+B)^(2)=A^(2)+B^(2). ...

    Text Solution

    |

  6. If A is a square matrix such that A A^T=I=A^TA, then A is

    Text Solution

    |

  7. If Aa n dB are symmetric matrices of the same order and X=A B+B Aa n d...

    Text Solution

    |

  8. [{:(2x+y,4x),(5x-7,4x):}]=[{:(7,7y-13),(y,x+6):}] then the value of x,...

    Text Solution

    |

  9. Given that [(1,omega,omega^(2)),(omega,omega^(2),1),(omega^(2),1,omega...

    Text Solution

    |

  10. If {:A=[(alpha,0),(1,1)]andB=[(1,0),(5,1)]:}, then te value of alpha f...

    Text Solution

    |

  11. [[i,0,0],[0,i,0],[0,0,i]] then A^(4n+1) =.... n in N

    Text Solution

    |

  12. The matrix A=[0-5 8 5 0 12-8-12 0] is a (a) diagonal matrix (b) symmet...

    Text Solution

    |

  13. If A=[(alpha,0),(1,1)] and B=[(9,a),(b,c)] and A^(2)=B, then the value...

    Text Solution

    |

  14. Find the value of k so that A^2=8A+kI where A=[(1,0),(-1,7)].

    Text Solution

    |

  15. A square matrix P satisfies P^(2)=I-P where I is identity matrix. If P...

    Text Solution

    |

  16. If A(alpha)=[(cosalpha,-sinalpha),(sinalpha,cosalpha)], then

    Text Solution

    |

  17. If B is an idempotent matrix, and A=I-B, then

    Text Solution

    |

  18. If B=[(3,4),(4,3)] and C=[(3,-4),(-2,3)] and X=BC, find X^(n)

    Text Solution

    |

  19. If A=[(1,0),(1//2,1)], A^(400) is equal to

    Text Solution

    |

  20. Let A=[(0,alpha),(0,0)] and (A+I)^(50)-50A=[(a,b),(c,d)], find abc+abd...

    Text Solution

    |