Home
Class 12
MATHS
If A=[(1,0),(1//2,1)], A^(400) is equal ...

If `A=[(1,0),(1//2,1)]`, `A^(400)` is equal to

A

`((1,0),(50,1))`

B

`((1,0),((1//2)^(100),1))`

C

`((1,0),(25,1))`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find \( A^{400} \) for the matrix \( A = \begin{pmatrix} 1 & 0 \\ \frac{1}{2} & 1 \end{pmatrix} \), we will first calculate \( A^2 \), then \( A^3 \), and look for a pattern to generalize \( A^n \). ### Step 1: Calculate \( A^2 \) \[ A^2 = A \cdot A = \begin{pmatrix} 1 & 0 \\ \frac{1}{2} & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ \frac{1}{2} & 1 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 1 \cdot 1 + 0 \cdot \frac{1}{2} = 1 \) - First row, second column: \( 1 \cdot 0 + 0 \cdot 1 = 0 \) - Second row, first column: \( \frac{1}{2} \cdot 1 + 1 \cdot \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = 1 \) - Second row, second column: \( \frac{1}{2} \cdot 0 + 1 \cdot 1 = 0 + 1 = 1 \) Thus, \[ A^2 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \] ### Step 2: Calculate \( A^3 \) \[ A^3 = A^2 \cdot A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ \frac{1}{2} & 1 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 1 \cdot 1 + 0 \cdot \frac{1}{2} = 1 \) - First row, second column: \( 1 \cdot 0 + 0 \cdot 1 = 0 \) - Second row, first column: \( 1 \cdot 1 + 1 \cdot \frac{1}{2} = 1 + \frac{1}{2} = \frac{3}{2} \) - Second row, second column: \( 1 \cdot 0 + 1 \cdot 1 = 0 + 1 = 1 \) Thus, \[ A^3 = \begin{pmatrix} 1 & 0 \\ \frac{3}{2} & 1 \end{pmatrix} \] ### Step 3: Calculate \( A^4 \) \[ A^4 = A^3 \cdot A = \begin{pmatrix} 1 & 0 \\ \frac{3}{2} & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ \frac{1}{2} & 1 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 1 \cdot 1 + 0 \cdot \frac{1}{2} = 1 \) - First row, second column: \( 1 \cdot 0 + 0 \cdot 1 = 0 \) - Second row, first column: \( \frac{3}{2} \cdot 1 + 1 \cdot \frac{1}{2} = \frac{3}{2} + \frac{1}{2} = 2 \) - Second row, second column: \( \frac{3}{2} \cdot 0 + 1 \cdot 1 = 0 + 1 = 1 \) Thus, \[ A^4 = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \] ### Step 4: Identify the Pattern From our calculations, we can see a pattern forming: - \( A^1 = \begin{pmatrix} 1 & 0 \\ \frac{1}{2} & 1 \end{pmatrix} \) - \( A^2 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \) - \( A^3 = \begin{pmatrix} 1 & 0 \\ \frac{3}{2} & 1 \end{pmatrix} \) - \( A^4 = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \) The pattern for the lower left element seems to be increasing by \( \frac{1}{2} \) for each power of \( A \): - \( A^n = \begin{pmatrix} 1 & 0 \\ \frac{n}{2} & 1 \end{pmatrix} \) ### Step 5: Generalize for \( A^{400} \) Using the identified pattern: \[ A^{400} = \begin{pmatrix} 1 & 0 \\ \frac{400}{2} & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 200 & 1 \end{pmatrix} \] ### Final Answer \[ A^{400} = \begin{pmatrix} 1 & 0 \\ 200 & 1 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    DISHA PUBLICATION|Exercise Exercise 1: Concept Builder (Topic 3)|23 Videos
  • MATHEMATICAL REASONING

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    DISHA PUBLICATION|Exercise Exercise-2 Concept Applicator|20 Videos

Similar Questions

Explore conceptually related problems

If A=[[1,0(1)/(2),1]], then A^(100) is equal to

If A={:[(1,0),(1,1)]:},"then "A^(2008) is equal to

If A=[{:(0,1),(1,0):}] then A^(2) is equal to

If A=[[1,0],[1,1]] then A^(n) is equal to

If A=[[1,0],[1,1]] then A^(-n) is equal to -

If A=[[1,a],[0,1]] , then A^(4) is equal to.

If A = {:((1,-1),(1,2)):} and I={:((1,0),(0,1)):} then 3A^(-1) is equal to :

DISHA PUBLICATION-MATRICES-Exercise 2: Concept Applicator
  1. If A1, A2, , A(2n-1)a r en skew-symmetric matrices of same order, the...

    Text Solution

    |

  2. For k=1/sqrt(50), the value of a, b, c such that PP' = I, where P=[(2/...

    Text Solution

    |

  3. IfA^(k)= 0 (Ais nilpotent with index k), (I-A)^(p)=I+A+A^(2)+. . .+A^(...

    Text Solution

    |

  4. If A and B are two square matrices such that B=-A^(-1)BA, then (A+B)^(...

    Text Solution

    |

  5. If A=[(1,-1),(2,-1)] and B=[(1,a),(4,b)] and (A+B)^(2)=A^(2)+B^(2). ...

    Text Solution

    |

  6. If A is a square matrix such that A A^T=I=A^TA, then A is

    Text Solution

    |

  7. If Aa n dB are symmetric matrices of the same order and X=A B+B Aa n d...

    Text Solution

    |

  8. [{:(2x+y,4x),(5x-7,4x):}]=[{:(7,7y-13),(y,x+6):}] then the value of x,...

    Text Solution

    |

  9. Given that [(1,omega,omega^(2)),(omega,omega^(2),1),(omega^(2),1,omega...

    Text Solution

    |

  10. If {:A=[(alpha,0),(1,1)]andB=[(1,0),(5,1)]:}, then te value of alpha f...

    Text Solution

    |

  11. [[i,0,0],[0,i,0],[0,0,i]] then A^(4n+1) =.... n in N

    Text Solution

    |

  12. The matrix A=[0-5 8 5 0 12-8-12 0] is a (a) diagonal matrix (b) symmet...

    Text Solution

    |

  13. If A=[(alpha,0),(1,1)] and B=[(9,a),(b,c)] and A^(2)=B, then the value...

    Text Solution

    |

  14. Find the value of k so that A^2=8A+kI where A=[(1,0),(-1,7)].

    Text Solution

    |

  15. A square matrix P satisfies P^(2)=I-P where I is identity matrix. If P...

    Text Solution

    |

  16. If A(alpha)=[(cosalpha,-sinalpha),(sinalpha,cosalpha)], then

    Text Solution

    |

  17. If B is an idempotent matrix, and A=I-B, then

    Text Solution

    |

  18. If B=[(3,4),(4,3)] and C=[(3,-4),(-2,3)] and X=BC, find X^(n)

    Text Solution

    |

  19. If A=[(1,0),(1//2,1)], A^(400) is equal to

    Text Solution

    |

  20. Let A=[(0,alpha),(0,0)] and (A+I)^(50)-50A=[(a,b),(c,d)], find abc+abd...

    Text Solution

    |