Home
Class 12
MATHS
Let A=[(0,alpha),(0,0)] and (A+I)^(50)-5...

Let `A=[(0,alpha),(0,0)]` and `(A+I)^(50)-50A=[(a,b),(c,d)]`, find abc+abd+bcd+acd

A

0

B

-1

C

1

D

Noneof these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( (A + I)^{50} - 50A \) where \( A = \begin{pmatrix} 0 & \alpha \\ 0 & 0 \end{pmatrix} \) and \( I \) is the identity matrix. We will find the values of \( a, b, c, \) and \( d \) from the resulting matrix and then compute \( abc + abd + bcd + acd \). ### Step-by-Step Solution 1. **Define the Matrices**: Let \( A = \begin{pmatrix} 0 & \alpha \\ 0 & 0 \end{pmatrix} \) and \( I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \). 2. **Calculate \( A^2 \)**: \[ A^2 = A \cdot A = \begin{pmatrix} 0 & \alpha \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & \alpha \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \] Since \( A^2 = 0 \), we can conclude that \( A^n = 0 \) for all \( n \geq 2 \). 3. **Calculate \( (A + I)^{50} \)**: Using the binomial expansion: \[ (A + I)^{50} = \sum_{k=0}^{50} \binom{50}{k} A^k I^{50-k} \] Since \( A^k = 0 \) for \( k \geq 2 \), the only terms that contribute are for \( k = 0 \) and \( k = 1 \): \[ (A + I)^{50} = \binom{50}{0} A^0 I^{50} + \binom{50}{1} A^1 I^{49} = I + 50A \] Thus, we have: \[ (A + I)^{50} = I + 50A \] 4. **Substitute into the Expression**: Now we substitute this back into our expression: \[ (A + I)^{50} - 50A = (I + 50A) - 50A = I \] 5. **Identify the Resulting Matrix**: The resulting matrix is: \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] Therefore, we can identify: - \( a = 1 \) - \( b = 0 \) - \( c = 0 \) - \( d = 1 \) 6. **Calculate the Expression \( abc + abd + bcd + acd \)**: Now we compute: \[ abc + abd + bcd + acd = (1)(0)(0) + (1)(0)(1) + (0)(0)(1) + (1)(0)(1) = 0 + 0 + 0 + 0 = 0 \] ### Final Answer The value of \( abc + abd + bcd + acd \) is \( \boxed{0} \).
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    DISHA PUBLICATION|Exercise Exercise 1: Concept Builder (Topic 3)|23 Videos
  • MATHEMATICAL REASONING

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    DISHA PUBLICATION|Exercise Exercise-2 Concept Applicator|20 Videos

Similar Questions

Explore conceptually related problems

Let A=[(0, alpha),(0,0)] and (A+I)^(50) -50A=[(a,b),(c,d)] . Then the value of a+b+c+d is

Let A=[(0,alpha),(0,0)] and (A+1)^(50)=50 A=[(a,b),(c,d)] Then the value of a+b+c+d is (A) 2 (B) 1 (C) 4 (D) none of these

Let A = [[0, alpha],[0,0]] and(A+I)^(70) - 70 A = [[a-1,b-1],[c-1,d-1]], the value of a + b + c + d is

Let S={n in N ,[(0,i),(i,0)]^n[(a,b),(c,d)]=[(a,b),(c,d)] forall a,b,c,d in R. Find the number of 2-digit numbers in S

Let A=[(5,0),(-1,0)] and B=[(0,1),(-1,0)] If 4A+5B-C=0 then C is

Let A=[(5,0),(-1,0)] and B=[(0,1),(-1,0)] If 4A+5B-C=0 then C is

Let A=[(a,b),(c, d)]and B=[(alpha), (beta)] ne [(0), (0)] such that AB = B and a+d=2021 , then the value of ad-bc is equal to ___________ .

A=[[0, oo],[0,0]] , (A+I)^50-50A=[[p,q],[r, s]], p^2+q^2+r^2+s^2=?

If A=[(alpha, 0,0),(0,b,0),(0,0,c)] and a,b,c are non zero real numbers, then A^-1 is (A) 1/(abc) [(1,0,0),(0,1,0),(0,0,1)] (B) 1/(abc) [(a,0,0),(0,b,0),(0,c,0)] (C) 1/(abc) [(a^-1,0,0),(0,b^-1,0),(0,c^-1,1)] (D) [(a^-1,0,0),(0,b^-1,0),(0,c^-1,1)]

._(a) X^(b) overset(-beta^(0))(to) . overset(alpha)(to) ._(c ) Y^(215) . overset(-beta^(0))(to) ._(110) Y^(d) Find a, b,c and d

DISHA PUBLICATION-MATRICES-Exercise 2: Concept Applicator
  1. If A1, A2, , A(2n-1)a r en skew-symmetric matrices of same order, the...

    Text Solution

    |

  2. For k=1/sqrt(50), the value of a, b, c such that PP' = I, where P=[(2/...

    Text Solution

    |

  3. IfA^(k)= 0 (Ais nilpotent with index k), (I-A)^(p)=I+A+A^(2)+. . .+A^(...

    Text Solution

    |

  4. If A and B are two square matrices such that B=-A^(-1)BA, then (A+B)^(...

    Text Solution

    |

  5. If A=[(1,-1),(2,-1)] and B=[(1,a),(4,b)] and (A+B)^(2)=A^(2)+B^(2). ...

    Text Solution

    |

  6. If A is a square matrix such that A A^T=I=A^TA, then A is

    Text Solution

    |

  7. If Aa n dB are symmetric matrices of the same order and X=A B+B Aa n d...

    Text Solution

    |

  8. [{:(2x+y,4x),(5x-7,4x):}]=[{:(7,7y-13),(y,x+6):}] then the value of x,...

    Text Solution

    |

  9. Given that [(1,omega,omega^(2)),(omega,omega^(2),1),(omega^(2),1,omega...

    Text Solution

    |

  10. If {:A=[(alpha,0),(1,1)]andB=[(1,0),(5,1)]:}, then te value of alpha f...

    Text Solution

    |

  11. [[i,0,0],[0,i,0],[0,0,i]] then A^(4n+1) =.... n in N

    Text Solution

    |

  12. The matrix A=[0-5 8 5 0 12-8-12 0] is a (a) diagonal matrix (b) symmet...

    Text Solution

    |

  13. If A=[(alpha,0),(1,1)] and B=[(9,a),(b,c)] and A^(2)=B, then the value...

    Text Solution

    |

  14. Find the value of k so that A^2=8A+kI where A=[(1,0),(-1,7)].

    Text Solution

    |

  15. A square matrix P satisfies P^(2)=I-P where I is identity matrix. If P...

    Text Solution

    |

  16. If A(alpha)=[(cosalpha,-sinalpha),(sinalpha,cosalpha)], then

    Text Solution

    |

  17. If B is an idempotent matrix, and A=I-B, then

    Text Solution

    |

  18. If B=[(3,4),(4,3)] and C=[(3,-4),(-2,3)] and X=BC, find X^(n)

    Text Solution

    |

  19. If A=[(1,0),(1//2,1)], A^(400) is equal to

    Text Solution

    |

  20. Let A=[(0,alpha),(0,0)] and (A+I)^(50)-50A=[(a,b),(c,d)], find abc+abd...

    Text Solution

    |