Home
Class 12
MATHS
If =int(1)^(e) (logx)^(n) dx, "then"I(n...

If =`int_(1)^(e) (logx)^(n) dx, "then"I_(n)+nI_(n-1)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(n)=int_(1)^(e)(log x)^(n) d x, then I_(n)+nI_(n-1) equal to

If for n gt 1, P_(n)=int_(1)^(e ) ( logx)^(n)dx , then P_(10)-90P_(8) is equal to:

If I_(n)=int_(1)^(e)(log x)^(n)dx then I_(8)+8I_(7)=

If I_(n)= int_(1)^(e) (log x)^(n) dx then I_(8) + 8I_(7)=

If I_(n)= int (log x)^(n)dx then I_(n)+nI_(n-1)=

If I_(m,n)= int_(0)^(1) x^(m) (ln x)^(n) dx then I_(m,n) is also equal to

If I_(m,n)= int_(0)^(1) x^(m) (ln x)^(n) dx then I_(m,n) is also equal to

If I_(n)=int("In "x)^(n)dx, " then " I_(n)+nI_(n-1)=