Home
Class 10
MATHS
" 25.Prove the following identity ":(sin...

" 25.Prove the following identity ":(sin A+cos A)/(sin A-cos A)+(sin A-cos A)/(sin A+cos A)=(2)/(2sin^(2)A-1)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following identities: (sin+cos A)/(sin A-cos A)+(sin-cos A)/(sin A+cos A)=(2)/(sin^(2)A-cos^(2)A)=(2)/(2sin^(2)A-1)=(2)/(1-2cos^(2)A)

Prove the following identity: (sin^3A+cos^3A)/(sinA+cosA)+(sin^3A-cos^3A)/(sinA-cosA)=2

Prove the following identities : (sin A + cos A)/ (sin A - cos A) + (sin A - cos A)/ (sin A + cos A) = (2)/ (2 sin^(2) A - 1)

(sin A+cos A)/(sin A-cos A)+(sin A-cos A)/(sin A+cos A)=(2)/(sin^(2)A-cos^(2)A) {Prove It}

Prove that : (sin A+cos A)/(sin A-cos A)+(sin A-cos A)/(sin A+cos A)=(2)/(sin^(2)-cos^(2)A)

Prove the following identities: (cos A)/(1-tan A)+(sin^(2)A)/(sin A-cos A)=sin A+cos A

Prove the following identities : (1 - cos A)/(sin A) + (sin A)/ (1 - cos A) = 2 cosec A

Prove the following identities : 1 - (cos^(2) A)/ (1 + sin A)= sin A

Prove the following identities : (sin A - cos A + 1)/(sin A + cos A - 1) = (cos A)/ (1 - sin A)

Prove the following identity: (1-s in A cos A)/(cos A(sec A-cos ecA))(sin^(2)A-cos^(2))/(sin^(3)A+cos^(3)A)=sin A