Home
Class 14
MATHS
(10.3 xx 10.3 xx 10.3 +1)/(10.3 xx 10.3 ...

`(10.3 xx 10.3 xx 10.3 +1)/(10.3 xx 10.3 - 10.3 + 1)` is equal to

A

`9.3`

B

`10.3`

C

`11.3`

D

`12.3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((10.3 \times 10.3 \times 10.3 + 1)/(10.3 \times 10.3 - 10.3 + 1)\), we can use algebraic identities to simplify the calculations. ### Step-by-Step Solution: 1. **Define Variables**: Let \( A = 10.3 \) and \( B = 1 \). 2. **Rewrite the Expression**: The expression can be rewritten as: \[ \frac{A^3 + B^3}{A^2 - AB + B^2} \] 3. **Apply the Algebraic Identities**: We know from algebra that: - \( A^3 + B^3 = (A + B)(A^2 - AB + B^2) \) - Thus, the expression simplifies to: \[ \frac{(A + B)(A^2 - AB + B^2)}{A^2 - AB + B^2} \] 4. **Cancel the Common Terms**: Since \( A^2 - AB + B^2 \) is present in both the numerator and the denominator, we can cancel it out (as long as it is not zero): \[ A + B \] 5. **Substitute Back the Values**: Now substitute back the values of \( A \) and \( B \): \[ A + B = 10.3 + 1 = 11.3 \] 6. **Final Result**: Therefore, the value of the original expression is: \[ \boxed{11.3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

((10. 3xx10. 3xx10. 3+1)/(10. 3xx10. 3-10. 3+1)) is equal to: (a) 9.3 (b) 10.3 (c) 11.3 (d) 12.3

1/7 xx 1/3 + 1/5 xx 10/3 - 5/6

3 xx 10^(5) + 4 xx 10^(3) + 7 xx 10^(2) + 5 is equal to

3xx10^(5) + 4xx10^(3) + 7xx10^(2) + 5 is equal to

If 4003250 = 4 xx 10^(x) + 3 xx 10^(7) + 2 xx 10^(z) + 5 xx 10^(w) , then x + y + z + w is equal to

0.5xx10^(-4)xx0.3xx10^(-3)xx10