Home
Class 14
MATHS
When simplified the product (1 - 1/2)...

When simplified the product
`(1 - 1/2) (1 - 1/3) (1 - 1/4) .........(1-1/n)` gives :

A

`1/n`

B

`2/n`

C

`(2(n-1))/(n)`

D

`(2)/(n (n - 1))`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the product \( (1 - \frac{1}{2})(1 - \frac{1}{3})(1 - \frac{1}{4}) \ldots (1 - \frac{1}{n}) \), we can follow these steps: ### Step 1: Rewrite each term Each term in the product can be rewritten as: \[ 1 - \frac{1}{k} = \frac{k - 1}{k} \] So we can express the entire product as: \[ (1 - \frac{1}{2})(1 - \frac{1}{3})(1 - \frac{1}{4}) \ldots (1 - \frac{1}{n}) = \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} \cdots \frac{n-1}{n} \] ### Step 2: Write the product in fraction form Now, we can write the product as a single fraction: \[ \frac{1 \cdot 2 \cdot 3 \cdots (n-1)}{2 \cdot 3 \cdots n} \] ### Step 3: Simplify the fraction Notice that in the numerator, we have \( (n-1)! \) (the factorial of \( n-1 \)), and in the denominator, we can express it as: \[ 2 \cdot 3 \cdots n = n! / 1 \] Thus, we can rewrite the fraction as: \[ \frac{(n-1)!}{n!} \] ### Step 4: Further simplify Using the property of factorials, we know that: \[ n! = n \cdot (n-1)! \] So we can substitute this into our expression: \[ \frac{(n-1)!}{n \cdot (n-1)!} = \frac{1}{n} \] ### Conclusion Therefore, the simplified product is: \[ \frac{1}{n} \] ### Final Answer The final answer is \( \frac{1}{n} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

When simplified the product (1-1/3)(1-1/4)(1-1/5)......(1-1/n) becomes :

When simplified the product (1 - (1)/(3)) (1 - (1)/(4)) (1- (1)/(5)) …. (1 - (1)/(n)) becomes :

The value of (1 - 1/2) (1 - 1/3) (1 - 1/4)(1 - 1/5) ………(1 - 1/n) is :

simplified value of (1-1/3)(1-1/4)(1-1/5)......(1-1/99 )(1-1/100) is

The simplified value of (1-1/3) (1- 1/4) (1-1/5) …(1-1/(99)) (1- (1)/(100)) is

The value of (1-1/2)(1-1/3)(1-1/4)(1-1/5)…(1-1/n) is :

Simplify (1-1/2)xx(1-1/3)xx(1-1/4)xx(1-1/5)=......... A) 1/2 B) 1/5 C) 4/5 D) 5