Home
Class 14
MATHS
The value of (root(3)(3.5) + root(3)(2.5...

The value of `(root(3)(3.5) + root(3)(2.5)) { (root(3)(3.5) )^2 - root(3) (8.75) + ( root(3)(2.5))^2} ` is

A

5.375

B

1

C

6

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( (\sqrt[3]{3.5} + \sqrt[3]{2.5}) \left( (\sqrt[3]{3.5})^2 - \sqrt[3]{8.75} + (\sqrt[3]{2.5})^2 \right) \), we can follow these steps: ### Step 1: Define Variables Let: - \( A = \sqrt[3]{3.5} \) - \( B = \sqrt[3]{2.5} \) ### Step 2: Rewrite the Expression The expression can be rewritten using the variables: \[ (A + B) \left( A^2 - \sqrt[3]{8.75} + B^2 \right) \] ### Step 3: Simplify \( \sqrt[3]{8.75} \) We can express \( 8.75 \) in terms of \( A \) and \( B \): \[ 8.75 = 3.5 \times 2.5 = (A^3)(B^3) \] Thus, we have: \[ \sqrt[3]{8.75} = \sqrt[3]{3.5 \times 2.5} = AB \] ### Step 4: Substitute Back into the Expression Now, we can substitute back into the expression: \[ (A + B) \left( A^2 - AB + B^2 \right) \] ### Step 5: Recognize the Identity The expression \( A^2 - AB + B^2 \) can be recognized as: \[ A^2 - AB + B^2 = \frac{(A + B)^3 - (A^3 + B^3)}{A + B} \] However, we can also use the identity for the sum of cubes: \[ A^3 + B^3 = (A + B)(A^2 - AB + B^2) \] ### Step 6: Calculate \( A^3 + B^3 \) Now, calculate \( A^3 + B^3 \): \[ A^3 = 3.5 \quad \text{and} \quad B^3 = 2.5 \] Thus, \[ A^3 + B^3 = 3.5 + 2.5 = 6 \] ### Step 7: Substitute Back to Find the Final Value Now, substituting back, we have: \[ (A + B)(A^2 - AB + B^2) = A^3 + B^3 = 6 \] ### Conclusion The value of the original expression is \( 6 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

root(3)(135)-:root(3)(5)

root(3)(4) times root(6)(5)

root(3)(2) times root(3)(4)

(root(3)(a^2).root(3)(a))/(root(5)(a^5)) =

The value of (root3(8)+root3(27)-root3(343))/((2)^(2)-3) is

Multiply : root(3)(5) by root(4)(2) .

(root(6)(5))(root(3)(2))(sqrt(3))(root(12)(6)) =