Home
Class 14
MATHS
The value of sqrt32 - sqrt128 + sqrt50 ...

The value of `sqrt32 - sqrt128 + sqrt50` correct to 3 places of decimals is :

A

1.732

B

1.141

C

1.414

D

1.441

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt{32} - \sqrt{128} + \sqrt{50} \) and find its value correct to three decimal places, we can follow these steps: ### Step 1: Simplify each square root We start by simplifying each square root in the expression. 1. **For \( \sqrt{32} \)**: \[ \sqrt{32} = \sqrt{16 \times 2} = \sqrt{16} \times \sqrt{2} = 4\sqrt{2} \] 2. **For \( \sqrt{128} \)**: \[ \sqrt{128} = \sqrt{64 \times 2} = \sqrt{64} \times \sqrt{2} = 8\sqrt{2} \] 3. **For \( \sqrt{50} \)**: \[ \sqrt{50} = \sqrt{25 \times 2} = \sqrt{25} \times \sqrt{2} = 5\sqrt{2} \] ### Step 2: Substitute back into the expression Now we can substitute these simplified forms back into the original expression: \[ \sqrt{32} - \sqrt{128} + \sqrt{50} = 4\sqrt{2} - 8\sqrt{2} + 5\sqrt{2} \] ### Step 3: Combine like terms Next, we combine the terms: \[ (4\sqrt{2} - 8\sqrt{2} + 5\sqrt{2}) = (4 - 8 + 5)\sqrt{2} = 1\sqrt{2} = \sqrt{2} \] ### Step 4: Calculate the numerical value of \( \sqrt{2} \) Now we need to find the numerical value of \( \sqrt{2} \): \[ \sqrt{2} \approx 1.414 \] ### Step 5: Round to three decimal places Finally, we round \( 1.414 \) to three decimal places: \[ \sqrt{2} \approx 1.414 \] Thus, the value of \( \sqrt{32} - \sqrt{128} + \sqrt{50} \) correct to three decimal places is: \[ \boxed{1.414} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If sqrt(3)=1.732, find the value of sqrt(192)-(1)/(2)sqrt(48)-sqrt(75) correct to 3 places of decimal.

If sqrt(3)=1.732 , then find the value of 4(sqrt(192)-(1)/(2)sqrt(48)-sqrt(75)) correct to 3 places of decimal.

The value of sqrt18 + sqrt50 - sqrt32 is

Given,sqrt(2)=1.414 and sqrt(6)=2.449, find the value of (1)/(sqrt(3)-sqrt(2)-1) correct to 3 places of decimal.

Evaluate sqrt3 correct up to two places of decimal.

Calculate sqrt(26) correct to two places of decimal.