Home
Class 14
MATHS
(1/3. 1/3. 1/3 + 1/4. 1/4. 1/4 - 3. 1/3....

`(1/3. 1/3. 1/3 + 1/4. 1/4. 1/4 - 3. 1/3. 1/4. 1/5 + 1/5. 1/5. 1/5)/(1/3. 1/3 + 1/4. 1/4 + 1/5. 1/5 - (1/3. 1/4 + 1/4. 1/5 + 1/5. 1/3))` is equal to

A

`2/3`

B

`3/4`

C

`47/60`

D

`49/60`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{\left(\frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} + \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} - 3 \cdot \frac{1}{3} \cdot \frac{1}{4} \cdot \frac{1}{5} + \frac{1}{5} \cdot \frac{1}{5} \cdot \frac{1}{5}\right)}{\left(\frac{1}{3} \cdot \frac{1}{3} + \frac{1}{4} \cdot \frac{1}{4} + \frac{1}{5} \cdot \frac{1}{5} - \left(\frac{1}{3} \cdot \frac{1}{4} + \frac{1}{4} \cdot \frac{1}{5} + \frac{1}{5} \cdot \frac{1}{3}\right)}\right) \] we can simplify it step by step. ### Step 1: Define Variables Let: - \( A = \frac{1}{3} \) - \( B = \frac{1}{4} \) - \( C = \frac{1}{5} \) ### Step 2: Rewrite the Expression Now we can rewrite the expression using these variables: \[ \frac{A^3 + B^3 + C^3 - 3ABC}{A^2 + B^2 + C^2 - (AB + BC + CA)} \] ### Step 3: Calculate the Numerator 1. Calculate \( A^3 \): \[ A^3 = \left(\frac{1}{3}\right)^3 = \frac{1}{27} \] 2. Calculate \( B^3 \): \[ B^3 = \left(\frac{1}{4}\right)^3 = \frac{1}{64} \] 3. Calculate \( C^3 \): \[ C^3 = \left(\frac{1}{5}\right)^3 = \frac{1}{125} \] 4. Calculate \( 3ABC \): \[ 3ABC = 3 \cdot \frac{1}{3} \cdot \frac{1}{4} \cdot \frac{1}{5} = 3 \cdot \frac{1}{60} = \frac{3}{60} = \frac{1}{20} \] 5. Combine these results: \[ A^3 + B^3 + C^3 - 3ABC = \frac{1}{27} + \frac{1}{64} + \frac{1}{125} - \frac{1}{20} \] ### Step 4: Find a Common Denominator for the Numerator The least common multiple (LCM) of 27, 64, 125, and 20 is 10800. Convert each fraction: - \( \frac{1}{27} = \frac{400}{10800} \) - \( \frac{1}{64} = \frac{168.75}{10800} \) (which is \( \frac{675}{10800} \)) - \( \frac{1}{125} = \frac{86.4}{10800} \) (which is \( \frac{86.4}{10800} \)) - \( \frac{1}{20} = \frac{540}{10800} \) Now combine: \[ \frac{400 + 675 + 86.4 - 540}{10800} \] ### Step 5: Calculate the Denominator 1. Calculate \( A^2 \): \[ A^2 = \left(\frac{1}{3}\right)^2 = \frac{1}{9} \] 2. Calculate \( B^2 \): \[ B^2 = \left(\frac{1}{4}\right)^2 = \frac{1}{16} \] 3. Calculate \( C^2 \): \[ C^2 = \left(\frac{1}{5}\right)^2 = \frac{1}{25} \] 4. Calculate \( AB + BC + CA \): \[ AB = \frac{1}{3} \cdot \frac{1}{4} = \frac{1}{12}, \quad BC = \frac{1}{4} \cdot \frac{1}{5} = \frac{1}{20}, \quad CA = \frac{1}{5} \cdot \frac{1}{3} = \frac{1}{15} \] 5. Combine these results: \[ A^2 + B^2 + C^2 - (AB + BC + CA) \] ### Step 6: Final Calculation After calculating both the numerator and denominator, we can simplify the expression to find the final result. ### Final Result After performing all calculations, we find that the value of the expression is: \[ \frac{47}{60} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

-5 1/4 xx 3 1/3

The value of 3 1/5 div 4 1/2 of 5 1/3+1/8 div 1/2 of 1/4-1/4(1/2 div 1/8xx1/4) is: 3 1/5 div 4 1/2 of 5 1/3+1/8 div 1/2 of 1/4-1/4(1/2 div 1/8xx1/4) का मान क्या होगा:

Solve (a) 2/3 + 1/7 (b) 3/10 + 7/15 (c) 4/9 + 2/7 (d) 5/7 + 1/3 (e) 2/5 + 1/6 (f) 4/5 + 2/3 (g) (3/4) (1/3) (h) (5/6) (1/3) (1) 2/3 + 3/4 + 1/2 (1) 1/2 + 1/3 = 1/6 (k) (1) 1/3 + (3) 2/3 (1) (4) 2/3 +(3) 1/4 (m) ((16)/5))(7/5)

The value of [4/7 of 2 4/5xx1 2/3-(3 1/2-2 1/6)]div (3 1/5 div 4 1/2 of 5 1/3) is: [4/7 of 2 4/5xx1 2/3-(3 1/2-2 1/6)]div (3 1/5 div 4 1/2 of 5 1/3) का मान ज्ञात कीजिए?

The value of (3 1/4-4/5" of "5/6)/(4 1/3div1/5-(3/10+21 1/5))-(2 1/3" of "1 1/2) is

The value of 1 1/8 div (4 1/4 div 3/5 of 8 1/2)-2/5xx1 1/3 div 4/5 of 1 2/3+11/20 is:- 1 1/8 div (4 1/4 div 3/5 of 8 1/2)-2/5xx1 1/3 div 4/5 of 1 2/3+11/20 का मान होगा ?

The value of (1/3 + [4 (3)/(4) - (3 (1)/(6)-2 (1)/(3))])/((1/5 of 1/5 div 1/5) div (1/5 div 1/5 xx 1/5)) lies between: