Home
Class 14
MATHS
If cot A +(1)/( cot A) =2 , then cot...

If `cot A +(1)/( cot A) =2` , then `cot^2 A + (1)/( cot^2 A)` is equal to

A

4

B

`sqrt(2)`

C

`1`

D

`2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: 1. **Given:** \[ \cot A + \frac{1}{\cot A} = 2 \] 2. **Square both sides:** \[ \left(\cot A + \frac{1}{\cot A}\right)^2 = 2^2 \] This expands to: \[ \cot^2 A + 2 \cdot \cot A \cdot \frac{1}{\cot A} + \frac{1}{\cot^2 A} = 4 \] 3. **Simplify the equation:** Since \(\cot A \cdot \frac{1}{\cot A} = 1\), we can simplify the equation: \[ \cot^2 A + 2 + \frac{1}{\cot^2 A} = 4 \] 4. **Rearranging the equation:** Subtract 2 from both sides: \[ \cot^2 A + \frac{1}{\cot^2 A} = 4 - 2 \] This simplifies to: \[ \cot^2 A + \frac{1}{\cot^2 A} = 2 \] 5. **Conclusion:** Therefore, the value of \(\cot^2 A + \frac{1}{\cot^2 A}\) is: \[ \boxed{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

cot^(-1)(-2) is equal to

cot7(1^(@))/(2) is equal to

cot^(-1)(-1/2)+cot^(-1)(-1/3) is equal to

(1+ tan ^(2) A)/( 1 + cot^(2) A) equals

(cot^2 15^@-1)/(cot^2 15^@+1)=

If A+B+C=pi and tan A=1, tanB =2, then (cot C)/(cot A cot B+cot B cot C+cot C cot A) is equal to

In Delta ABC,a^(2)+c^(2)=2002b^(2) then (cot A+cot C)/(cot B) is equal to

(cot2 theta-cot3 theta)/(cot theta) is equal to

If cotA+1/cotA=1 then cot^2A+1/cot^2A=