Home
Class 14
MATHS
( Sec^2 theta - cot ^2 (90 - theta))/( ...

`( Sec^2 theta - cot ^2 (90 - theta))/( cosec ^2 67^@ - tan ^2 23^@) + sin ^2 40 ^@ + sin ^2 50^@ ` is equal to

A

0

B

4

C

2

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{\sec^2 \theta - \cot^2 (90^\circ - \theta)}{\csc^2 67^\circ - \tan^2 23^\circ} + \sin^2 40^\circ + \sin^2 50^\circ, \] we will simplify it step by step. ### Step 1: Simplify \(\cot^2(90^\circ - \theta)\) Using the co-function identity, we know that: \[ \cot(90^\circ - \theta) = \tan \theta. \] Thus, \[ \cot^2(90^\circ - \theta) = \tan^2 \theta. \] ### Step 2: Rewrite the numerator Now, we can rewrite the numerator: \[ \sec^2 \theta - \cot^2(90^\circ - \theta) = \sec^2 \theta - \tan^2 \theta. \] ### Step 3: Use the identity \(\sec^2 \theta - \tan^2 \theta = 1\) From trigonometric identities, we have: \[ \sec^2 \theta - \tan^2 \theta = 1. \] So, the numerator simplifies to: \[ 1. \] ### Step 4: Simplify the denominator \(\csc^2 67^\circ - \tan^2 23^\circ\) Using the identity \(\csc(90^\circ - x) = \sec x\): \[ \csc 67^\circ = \sec(90^\circ - 67^\circ) = \sec 23^\circ. \] Thus, \[ \csc^2 67^\circ = \sec^2 23^\circ. \] Now, we can rewrite the denominator: \[ \csc^2 67^\circ - \tan^2 23^\circ = \sec^2 23^\circ - \tan^2 23^\circ. \] ### Step 5: Use the identity \(\sec^2 x - \tan^2 x = 1\) Again, using the identity: \[ \sec^2 23^\circ - \tan^2 23^\circ = 1. \] So, the denominator simplifies to: \[ 1. \] ### Step 6: Substitute back into the expression Now we can substitute back into the original expression: \[ \frac{1}{1} + \sin^2 40^\circ + \sin^2 50^\circ. \] This simplifies to: \[ 1 + \sin^2 40^\circ + \sin^2 50^\circ. \] ### Step 7: Use the identity \(\sin^2 x + \cos^2 x = 1\) Notice that: \[ \sin^2 50^\circ = \cos^2 40^\circ. \] Thus, \[ \sin^2 40^\circ + \sin^2 50^\circ = \sin^2 40^\circ + \cos^2 40^\circ = 1. \] ### Step 8: Final simplification Now we can add: \[ 1 + 1 = 2. \] ### Conclusion Thus, the entire expression simplifies to: \[ \boxed{2}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : (sec^(2)theta-cot^(2)(90^(@)-theta))/("cosec"^(2)67^(@)-tan^(2)23^(2))+(sin^(2)40^(@)+sin^(2)50^(@))

2 cosec^2 23^@ cot^2 67^@ - sin^2 23^@-sin^2 67^@-cot^2 67^@ is equal to

If l cos^2 theta + m sin^2 theta =(cos^2 theta (cosec^2theta +1))/(cosec^2 theta -1), 0^@ lt theta lt 90^@ , then tan theta is equal to

(cosec A - sin A)^2 + (sec A - cos A)^2 - (cot A - tan A)^2 is equal to

" (2.) "tan theta+cot theta=sec theta cosec theta

What is the value of [tan^2 (90 - theta) - sin^2 (90 - theta)] cosec^2 (90 - theta) cot^2 (90 - theta) ?