Home
Class 14
MATHS
the value of sqrt(root (3) (0.000729 ))...

the value of ` sqrt(root (3) (0.000729 ))` is

A

`0.03`

B

`0.09`

C

`0.9`

D

`0.3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the value of \( \sqrt[2]{\sqrt[3]{0.000729}} \), we will break it down into steps. ### Step 1: Convert the decimal to a fraction First, we convert \( 0.000729 \) into a fraction. \[ 0.000729 = \frac{729}{1000000} \] ### Step 2: Find the cube root Next, we need to find the cube root of \( 0.000729 \) or \( \frac{729}{1000000} \). \[ \sqrt[3]{0.000729} = \sqrt[3]{\frac{729}{1000000}} = \frac{\sqrt[3]{729}}{\sqrt[3]{1000000}} \] We know that \( 729 = 9^3 \), so \( \sqrt[3]{729} = 9 \). Also, \( 1000000 = 10^6 \), so \( \sqrt[3]{1000000} = 10^2 = 100 \). Thus, \[ \sqrt[3]{0.000729} = \frac{9}{100} \] ### Step 3: Find the square root Now we will find the square root of \( \frac{9}{100} \). \[ \sqrt{\frac{9}{100}} = \frac{\sqrt{9}}{\sqrt{100}} = \frac{3}{10} \] ### Step 4: Convert to decimal (if needed) The fraction \( \frac{3}{10} \) can also be expressed as a decimal: \[ \frac{3}{10} = 0.3 \] ### Final Answer Thus, the value of \( \sqrt[2]{\sqrt[3]{0.000729}} \) is \( 0.3 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sqrt(root(3)(0.046656)) is:

The value of 2 + sqrt(0.09) -root(3)(0.008) - 75% of 2.80 is

Simplify sqrtroot3(0.000729)

(0.000729)^(1/6)

root (3)(0.000729/0.085184) =?

Find the value of 3sqrt((0.000729)/(0.085184)) .

The value of sqrt(root(3)(13824)+sqrt(5776)) is

The value of (sqrt63 xx sqrt7)/(root3(27)) is