Home
Class 14
MATHS
If 3x^2 - 4x - 3=0 then the value o...

If ` 3x^2 - 4x - 3=0` then the value of ` x- (1)/(x)` is

A

3

B

4

C

`3/4`

D

`4/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 3x^2 - 4x - 3 = 0 \) and find the value of \( x - \frac{1}{x} \), we can follow these steps: ### Step 1: Solve the quadratic equation We start with the quadratic equation: \[ 3x^2 - 4x - 3 = 0 \] We can use the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) where \( a = 3 \), \( b = -4 \), and \( c = -3 \). ### Step 2: Calculate the discriminant First, we calculate the discriminant \( b^2 - 4ac \): \[ b^2 - 4ac = (-4)^2 - 4 \cdot 3 \cdot (-3) = 16 + 36 = 52 \] ### Step 3: Substitute into the quadratic formula Now we substitute into the quadratic formula: \[ x = \frac{-(-4) \pm \sqrt{52}}{2 \cdot 3} = \frac{4 \pm \sqrt{52}}{6} \] We can simplify \( \sqrt{52} \) to \( 2\sqrt{13} \): \[ x = \frac{4 \pm 2\sqrt{13}}{6} = \frac{2 \pm \sqrt{13}}{3} \] ### Step 4: Find \( x - \frac{1}{x} \) Next, we need to find \( x - \frac{1}{x} \). We can start by calculating \( \frac{1}{x} \): \[ x = \frac{2 + \sqrt{13}}{3} \quad \text{(taking the positive root for simplicity)} \] Thus, \[ \frac{1}{x} = \frac{3}{2 + \sqrt{13}} \] To rationalize the denominator: \[ \frac{1}{x} = \frac{3(2 - \sqrt{13})}{(2 + \sqrt{13})(2 - \sqrt{13})} = \frac{3(2 - \sqrt{13})}{4 - 13} = \frac{3(2 - \sqrt{13})}{-9} = -\frac{1}{3}(2 - \sqrt{13}) = -\frac{2}{3} + \frac{\sqrt{13}}{9} \] ### Step 5: Calculate \( x - \frac{1}{x} \) Now we can calculate \( x - \frac{1}{x} \): \[ x - \frac{1}{x} = \frac{2 + \sqrt{13}}{3} + \left(\frac{2}{3} - \frac{\sqrt{13}}{9}\right) \] Combining the terms: \[ x - \frac{1}{x} = \frac{2 + \sqrt{13} + 2 - \frac{\sqrt{13}}{3}}{3} \] This simplifies to: \[ = \frac{4 + \frac{3\sqrt{13} - \sqrt{13}}{3}}{3} = \frac{4 + \frac{2\sqrt{13}}{3}}{3} \] ### Step 6: Final simplification To find \( x - \frac{1}{x} \), we can also use the relation derived from the quadratic equation: \[ 3\left(x - \frac{1}{x}\right) = 4 \implies x - \frac{1}{x} = \frac{4}{3} \] Thus, the value of \( x - \frac{1}{x} \) is: \[ \boxed{\frac{4}{3}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x^2 - 3x +1=0, then the value of x +1/x is

If x^3+2x^(2)-3x-1=0 then the value of S_(-4) is

If x^2 - 3x + 1 = 0 , then the value of (x^6 + x^4 + x^2 + 1)/(x^3) will be

If x^(2)-4x +1=0 , then what is the value of x^(3)+(1)/(x^(3)) ?