Home
Class 14
MATHS
find the value of the expression x^5...

find the value of the expression ` x^5 - 12 x^4 +12x^3 - 12 x^2 +12 x -1` when x =11 .

A

12

B

0

C

10

D

11

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the expression \( x^5 - 12x^4 + 12x^3 - 12x^2 + 12x - 1 \) when \( x = 11 \), we can follow these steps: 1. **Substitute \( x = 11 \)** into the expression: \[ 11^5 - 12 \cdot 11^4 + 12 \cdot 11^3 - 12 \cdot 11^2 + 12 \cdot 11 - 1 \] 2. **Calculate each power of 11**: - \( 11^2 = 121 \) - \( 11^3 = 11 \cdot 121 = 1331 \) - \( 11^4 = 11 \cdot 1331 = 14641 \) - \( 11^5 = 11 \cdot 14641 = 161051 \) 3. **Substitute these values back into the expression**: \[ 161051 - 12 \cdot 14641 + 12 \cdot 1331 - 12 \cdot 121 + 12 \cdot 11 - 1 \] 4. **Calculate the products**: - \( 12 \cdot 14641 = 175692 \) - \( 12 \cdot 1331 = 15972 \) - \( 12 \cdot 121 = 1452 \) - \( 12 \cdot 11 = 132 \) 5. **Substitute these products back into the expression**: \[ 161051 - 175692 + 15972 - 1452 + 132 - 1 \] 6. **Perform the calculations step by step**: - First, calculate \( 161051 - 175692 \): \[ 161051 - 175692 = -14641 \] - Next, add \( 15972 \): \[ -14641 + 15972 = 1331 \] - Then, subtract \( 1452 \): \[ 1331 - 1452 = -121 \] - Add \( 132 \): \[ -121 + 132 = 11 \] - Finally, subtract \( 1 \): \[ 11 - 1 = 10 \] 7. **Final result**: The value of the expression when \( x = 11 \) is \( 10 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If x = 11, the value of x^5 - 12 x^4 + 12x^3 - 12x^2 + 12x -1 is

Find the value of the expression (9x^(2) + 24 x + 16) , when x = 12

Find the value of x=> 5:x=3:12 .

Find the square root of 4x^(6) - 12x^(5) + 9x^(4) + 8x^(3) - 12x^(2) + 4

Find the extreme values of the function y=2x^3-9x^2+12x+5