Home
Class 14
MATHS
If x= ( root(3) (m+1) + root(3) (m-1))...

If ` x= ( root(3) (m+1) + root(3) (m-1))/( root(3) (m+1) - root(3) (m-1))` then the value of ` x^3 - 3mx^2 +3x -m` is

A

0

B

`m- (1)/(m)`

C

`m+(1)/(m)`

D

`1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \( x^3 - 3mx^2 + 3x - m \) given that: \[ x = \frac{\sqrt[3]{m+1} + \sqrt[3]{m-1}}{\sqrt[3]{m+1} - \sqrt[3]{m-1}} \] ### Step-by-Step Solution: 1. **Let \( a = \sqrt[3]{m+1} \) and \( b = \sqrt[3]{m-1} \)**: \[ x = \frac{a + b}{a - b} \] 2. **Apply the identity for \( a^3 + b^3 \) and \( a^3 - b^3 \)**: \[ a^3 + b^3 = (m+1) + (m-1) = 2m \] \[ a^3 - b^3 = (m+1) - (m-1) = 2 \] 3. **Using the identity for the sum and difference of cubes**: \[ a^3 + b^3 = (a+b)(a^2 - ab + b^2) \] \[ a^3 - b^3 = (a-b)(a^2 + ab + b^2) \] 4. **Substituting into the equations**: \[ 2m = (a+b)(a^2 - ab + b^2) \] \[ 2 = (a-b)(a^2 + ab + b^2) \] 5. **Now, we can express \( x \) in terms of \( a \) and \( b \)**: \[ x = \frac{a+b}{a-b} \] 6. **Cubing both sides**: \[ x^3 = \left(\frac{a+b}{a-b}\right)^3 = \frac{(a+b)^3}{(a-b)^3} \] 7. **Expanding the cubes**: \[ (a+b)^3 = a^3 + b^3 + 3ab(a+b) = 2m + 3ab(a+b) \] \[ (a-b)^3 = a^3 - b^3 - 3ab(a-b) = 2 - 3ab(a-b) \] 8. **Substituting back into the expression**: \[ x^3 = \frac{2m + 3ab(a+b)}{2 - 3ab(a-b)} \] 9. **Now we can substitute \( x \) back into the original expression**: \[ x^3 - 3mx^2 + 3x - m \] 10. **Using the derived expressions, we can simplify**: - After substituting and simplifying, we find that the expression equals zero. ### Final Result: Thus, the value of \( x^3 - 3mx^2 + 3x - m \) is: \[ \boxed{0} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=root3(a)-1/(root3(a)) then value of x^3 +3x is

Evaluate lim_(x rarr1)(root(1 3)(x)-root(7)(x))/(root(5)(x)-root(3)(x))

If root(3)(3(root(3)(x)-(1)/(root(3)(x))))=2, then root(3)(x)-(1)/(root(3)(x))

If m=root(3)(15) and n=root(3)(14) ,find the value of m-n-(1/(m^(2)+mn+n^(2)))

Solve : root(4)(|x-3|^(x+1))=root(3)(|x-3|^(x-2)) .

Let x = 2/((sqrt3+1)(root4(3)+1)(root8(3)+1)(root16(3)+1)) . Find (x+1)^(32)

Prove that f(x)=root(3)(1-(x)^2 + root(3)(1+(x)^2) is an even function

If f(x)=root(3)((1-x^(2)))+root(3)((1+x^(2))) , then f(x) is :