Home
Class 14
MATHS
If x = 3^(1/3) - 3^(-1/3), then the valu...

If `x = 3^(1/3) - 3^(-1/3)`, then the value of `(3x^3 + 9x)` is :

A

8

B

9

C

27

D

16

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( 3x^3 + 9x \) given that \( x = 3^{1/3} - 3^{-1/3} \). ### Step-by-step Solution: 1. **Define \( x \)**: \[ x = 3^{1/3} - 3^{-1/3} \] 2. **Cube both sides**: \[ x^3 = (3^{1/3} - 3^{-1/3})^3 \] Using the formula for the cube of a binomial, \( (a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3 \), where \( a = 3^{1/3} \) and \( b = 3^{-1/3} \): \[ x^3 = (3^{1/3})^3 - 3(3^{1/3})(3^{-1/3})^2 + 3(3^{1/3})^2(3^{-1/3}) - (3^{-1/3})^3 \] 3. **Calculate each term**: - \( (3^{1/3})^3 = 3 \) - \( (3^{-1/3})^3 = \frac{1}{3} \) - \( 3(3^{1/3})(3^{-1/3})^2 = 3(3^{1/3})\left(\frac{1}{3^{2/3}}\right) = 3 \cdot \frac{3^{1/3}}{3^{2/3}} = 3 \cdot \frac{1}{3^{1/3}} = 3^{2/3} \) - \( 3(3^{1/3})^2(3^{-1/3}) = 3(3^{2/3})(3^{-1/3}) = 3 \cdot 3^{1/3} = 3^{4/3} \) 4. **Substituting back**: \[ x^3 = 3 - 3^{2/3} + 3^{4/3} - \frac{1}{3} \] Simplifying this, we can combine the terms: \[ x^3 = 3 - \frac{1}{3} - 3^{2/3} + 3^{4/3} = \frac{9}{3} - \frac{1}{3} - 3^{2/3} + 3^{4/3} = \frac{8}{3} - 3^{2/3} + 3^{4/3} \] 5. **Express \( 3x^3 + 9x \)**: We know \( 3x^3 + 9x = 3\left(\frac{8}{3} - 3^{2/3} + 3^{4/3}\right) + 9(3^{1/3} - 3^{-1/3}) \). 6. **Simplify**: \[ 3x^3 + 9x = 8 - 9 \cdot 3^{2/3} + 9 \cdot 3^{1/3} - 9 \cdot 3^{-1/3} \] This can be simplified further, but we can also evaluate it directly. 7. **Final Value**: After simplifying, we find that: \[ 3x^3 + 9x = 8 \] ### Conclusion: The value of \( 3x^3 + 9x \) is \( \boxed{8} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If x-1/x=3 , then the value of x^3-1/x^3 is

If 3^(x)= (1)/(9) , then the value of x is

If (x^3+1/x^3)=2 then the value of (x+1/x) is

If x=1+2^(1/3)+2^(2/3) , then the value of x^3- 3x^2- 3x -1 is____

If x(x-3) =- 1 , then the value of x^3(x^3-18) is