Home
Class 14
MATHS
If xy(x+y) = m, then the value of (x^3 +...

If `xy(x+y) = m`, then the value of `(x^3 + y^3+ 3m) ` is :

A

`(m^3)/(xy)`

B

`(m^3)/((x+y)^3)`

C

`(m^3)/(x^3 y^3)`

D

`mx^3 y^3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: 1. **Given**: \( xy(x+y) = m \) We need to find the value of \( x^3 + y^3 + 3m \). 2. **Using the identity for cubes**: We know that: \[ x^3 + y^3 = (x+y)(x^2 - xy + y^2) \] We can also express \( x^2 - xy + y^2 \) in terms of \( x+y \) and \( xy \): \[ x^2 - xy + y^2 = (x+y)^2 - 3xy \] Therefore, we can rewrite \( x^3 + y^3 \) as: \[ x^3 + y^3 = (x+y)((x+y)^2 - 3xy) \] 3. **Substituting \( m \)**: Since \( m = xy(x+y) \), we can express \( x+y \) in terms of \( m \) and \( xy \): \[ x+y = \frac{m}{xy} \] 4. **Substituting back into the equation**: Now, we can substitute \( x+y \) into the expression for \( x^3 + y^3 \): \[ x^3 + y^3 = \left(\frac{m}{xy}\right)\left(\left(\frac{m}{xy}\right)^2 - 3xy\right) \] 5. **Calculating \( 3m \)**: We also need to add \( 3m \): \[ 3m = 3 \cdot xy(x+y) = 3m \] 6. **Combining the results**: Now we can combine \( x^3 + y^3 \) and \( 3m \): \[ x^3 + y^3 + 3m = \left(\frac{m}{xy}\right)\left(\left(\frac{m}{xy}\right)^2 - 3xy\right) + 3m \] 7. **Final simplification**: After simplifying the above expression, we find that: \[ x^3 + y^3 + 3m = m^2 \] Thus, the final answer is: \[ \boxed{m^2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If xy(x + y) = 1 then,the value of 1/(x^3 y^3) -x^3 - y^3 is

If x - y = 1 , then the value of x^3 - y^3 - 3xy will be :

If x-y= -1 , then find the value of x^3 - y^3 +3xy

If x-y =4 and xy=45 , then the value of (x^3 - y^3) is :