Home
Class 14
MATHS
In a triangle ABC , OB and OC are the bi...

In a triangle ABC , OB and OC are the bisector of angle `angleB` and `angleC` respectively . `angleBAC = 60^@` . The angle `angleBOC` will be :

A

`150^@`

B

`120^@`

C

`100^@`

D

`90^@`

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle \( \angle BOC \) in triangle \( ABC \) where \( OB \) and \( OC \) are the bisectors of angles \( B \) and \( C \) respectively, and \( \angle BAC = 60^\circ \), we can follow these steps: ### Step-by-Step Solution: 1. **Identify the Given Information**: - We have triangle \( ABC \). - \( \angle BAC = 60^\circ \). - \( OB \) is the bisector of \( \angle B \). - \( OC \) is the bisector of \( \angle C \). 2. **Understand the Angles in Triangle**: - In any triangle, the sum of the angles is \( 180^\circ \). - Therefore, we can express \( \angle B + \angle C \) as: \[ \angle B + \angle C = 180^\circ - \angle A = 180^\circ - 60^\circ = 120^\circ \] 3. **Let \( \angle B = b \) and \( \angle C = c \)**: - From the previous step, we have: \[ b + c = 120^\circ \] 4. **Using the Angle Bisector Theorem**: - The angle bisector divides the angle into two equal parts. Thus: \[ \angle OBA = \frac{b}{2} \quad \text{and} \quad \angle OCA = \frac{c}{2} \] 5. **Finding \( \angle BOC \)**: - The angle \( \angle BOC \) can be calculated using the formula: \[ \angle BOC = 180^\circ - \left( \angle OBA + \angle OCA \right) \] - Substituting the values: \[ \angle BOC = 180^\circ - \left( \frac{b}{2} + \frac{c}{2} \right) = 180^\circ - \frac{b+c}{2} \] - Since \( b + c = 120^\circ \): \[ \angle BOC = 180^\circ - \frac{120^\circ}{2} = 180^\circ - 60^\circ = 120^\circ \] 6. **Final Answer**: - Therefore, the angle \( \angle BOC \) is \( 120^\circ \).
Promotional Banner

Similar Questions

Explore conceptually related problems

In the given figure, ABgtAC. If BO and CO are the bisectors of angleB and angleC respectively then

In a quadrilateral ABCD, AO and BO are the bisectors of angleA and angleB respectively. Prove that angleAOB=1/2(angleC+angleD).

In the given figure , AB = AC , angle BAC = 40^(@) , BE and CD are angle bisectors of angleB and angleC respectively . If angleDOE = x , the value of x is :

In triangleABC the bisectors of angleB and angleC intersect at I if angleA=70^(@) then angle BIC=…………..

BO and CO are external bisector of angleB and angleC of triangle ABC intersecting at O. If angleA=60^@, angleABC=70^@ , Find angleBOC

BO and CO are external bisector of angleB and angleC of triangle ABC intersecting at O. If angleA=60^@, angleABC=70^@ , Find angleBOC