Home
Class 14
MATHS
The value of ((sin theta + sin phi)/(cos...

The value of `((sin theta + sin phi)/(cos theta + cos phi)+ (cos theta - cos phi)/(sin theta - sin phi))` is :

A

1

B

2

C

`1/2`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{\sin \theta + \sin \phi}{\cos \theta + \cos \phi} + \frac{\cos \theta - \cos \phi}{\sin \theta - \sin \phi}\), we will break it down step by step. ### Step 1: Rewrite the expression We start with the expression: \[ \frac{\sin \theta + \sin \phi}{\cos \theta + \cos \phi} + \frac{\cos \theta - \cos \phi}{\sin \theta - \sin \phi} \] ### Step 2: Find a common denominator The common denominator for the two fractions is \((\cos \theta + \cos \phi)(\sin \theta - \sin \phi)\). We rewrite the expression: \[ \frac{(\sin \theta + \sin \phi)(\sin \theta - \sin \phi) + (\cos \theta - \cos \phi)(\cos \theta + \cos \phi)}{(\cos \theta + \cos \phi)(\sin \theta - \sin \phi)} \] ### Step 3: Expand the numerator Now we expand the numerator: 1. For the first term: \[ (\sin \theta + \sin \phi)(\sin \theta - \sin \phi) = \sin^2 \theta - \sin^2 \phi \] 2. For the second term: \[ (\cos \theta - \cos \phi)(\cos \theta + \cos \phi) = \cos^2 \theta - \cos^2 \phi \] So, the numerator becomes: \[ \sin^2 \theta - \sin^2 \phi + \cos^2 \theta - \cos^2 \phi \] ### Step 4: Use the Pythagorean identity Using the identity \(\sin^2 x + \cos^2 x = 1\), we can simplify: \[ (\sin^2 \theta + \cos^2 \theta) - (\sin^2 \phi + \cos^2 \phi) = 1 - 1 = 0 \] ### Step 5: Substitute back into the expression Now substituting back into the expression, we have: \[ \frac{0}{(\cos \theta + \cos \phi)(\sin \theta - \sin \phi)} = 0 \] ### Final Answer Thus, the value of the original expression is: \[ \boxed{0} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(sin theta-sin phi)^(2)+(cos theta-cos phi)^(2)=4sin^(2)(theta-phi)/(2)

" If "|{:(sin theta cos phi,,sin theta sin phi,,cos theta),(cos theta cos phi,, cos theta sin phi,,-sin theta),(-sin theta sin phi,,sin theta cos phi,,theta):}| then

cos 2 (theta+ phi) +4 cos (theta + phi ) sin theta sin phi + 2 sin ^(2) phi=

If sin 2 theta + sin 2 phi =1/2 and cos 2 theta + cos 2 phi =3/2, then cos ^(2) (theta - phi)=

If 0 lt theta , phi lt pi and 8 cos theta cos phi cos (theta + phi)+1=0 find theta and phi

If sin2 theta+sin2 phi=(1)/(2) and cos2 theta+cos2 phi=(3)/(2), then cos^(2)(theta-phi)=

If sin theta+sin phi=(1)/(4) and cos theta+cos phi=(1)/(5) then value of sin(theta+phi) is