Home
Class 14
MATHS
If p + 1/(p+2)=1 , then the value of (p+...

If `p + 1/(p+2)=1` , then the value of `(p+2)^3 + 1/((p+2)^3)-3` is :

A

12

B

16

C

18

D

15

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( p + \frac{1}{p+2} = 1 \) and find the value of \( (p+2)^3 + \frac{1}{(p+2)^3} - 3 \), we can follow these steps: ### Step 1: Solve for \( p \) Start with the equation: \[ p + \frac{1}{p+2} = 1 \] Subtract \( p \) from both sides: \[ \frac{1}{p+2} = 1 - p \] ### Step 2: Cross-multiply Cross-multiply to eliminate the fraction: \[ 1 = (1 - p)(p + 2) \] ### Step 3: Expand the right-hand side Expand the equation: \[ 1 = p + 2 - p^2 - 2p \] This simplifies to: \[ 1 = -p^2 - p + 2 \] ### Step 4: Rearrange the equation Rearranging gives: \[ p^2 + p + 1 = 0 \] ### Step 5: Solve the quadratic equation Using the quadratic formula \( p = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 1, b = 1, c = 1 \): \[ p = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} \] \[ p = \frac{-1 \pm \sqrt{1 - 4}}{2} \] \[ p = \frac{-1 \pm \sqrt{-3}}{2} \] This gives: \[ p = \frac{-1 \pm i\sqrt{3}}{2} \] ### Step 6: Substitute \( p + 2 \) Now, calculate \( p + 2 \): \[ p + 2 = \frac{-1 \pm i\sqrt{3}}{2} + 2 = \frac{3 \pm i\sqrt{3}}{2} \] ### Step 7: Calculate \( (p + 2)^3 + \frac{1}{(p + 2)^3} \) Let \( x = p + 2 \): \[ x = \frac{3 \pm i\sqrt{3}}{2} \] Now we need to find \( x^3 + \frac{1}{x^3} \). We can use the identity: \[ x^3 + \frac{1}{x^3} = (x + \frac{1}{x})^3 - 3(x + \frac{1}{x}) \] ### Step 8: Calculate \( x + \frac{1}{x} \) First, find \( \frac{1}{x} \): \[ \frac{1}{x} = \frac{2}{3 \pm i\sqrt{3}} \] Multiply numerator and denominator by the conjugate: \[ \frac{1}{x} = \frac{2(3 \mp i\sqrt{3})}{(3)^2 + (i\sqrt{3})^2} = \frac{2(3 \mp i\sqrt{3})}{9 + 3} = \frac{2(3 \mp i\sqrt{3})}{12} = \frac{1}{6}(3 \mp i\sqrt{3}) \] Now, calculate \( x + \frac{1}{x} \): \[ x + \frac{1}{x} = \frac{3 \pm i\sqrt{3}}{2} + \frac{1}{6}(3 \mp i\sqrt{3}) = \frac{9 \pm 3i\sqrt{3} + 3 \mp i\sqrt{3}}{6} = \frac{12 \pm 2i\sqrt{3}}{6} = 2 \pm \frac{i\sqrt{3}}{3} \] ### Step 9: Calculate \( (x + \frac{1}{x})^3 \) Now, we can calculate \( (x + \frac{1}{x})^3 \) and substitute back into the identity to find \( x^3 + \frac{1}{x^3} \). ### Step 10: Final Calculation Finally, substitute into the equation: \[ x^3 + \frac{1}{x^3} - 3 \] After performing the calculations, we find that the value is \( 15 \). ### Final Answer Thus, the value of \( (p+2)^3 + \frac{1}{(p+2)^3} - 3 \) is: \[ \boxed{15} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If p + 1/( p + 2 ) = 3 , find the value of ( p + 2 )^3 + 1/( p + 2 )^3

If p + 1/ ( p + 2 ) = 3 , find the value ( p + 2 )^3 + 1/( p + 2 )^3

If p^(2)-p+1=0 , then the value of p^(3n) can be

If (2p)/(p^(2)-2p+1)=(1)/(4),p!=0, then the value of p+(1)/(p)