Home
Class 14
MATHS
If (sqrt(5 + x) + sqrt(5 - x))/(sqrt(5 +...

If `(sqrt(5 + x) + sqrt(5 - x))/(sqrt(5 + x) - sqrt(5 - x)) = 3 `, then what is the value of x ?

A

`5/ 2`

B

`25/3`

C

`4`

D

`3 `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{\sqrt{5 + x} + \sqrt{5 - x}}{\sqrt{5 + x} - \sqrt{5 - x}} = 3, \] we will follow these steps: ### Step 1: Cross-multiply We can cross-multiply to eliminate the fraction: \[ \sqrt{5 + x} + \sqrt{5 - x} = 3(\sqrt{5 + x} - \sqrt{5 - x}). \] ### Step 2: Expand the right side Distributing the 3 on the right side gives: \[ \sqrt{5 + x} + \sqrt{5 - x} = 3\sqrt{5 + x} - 3\sqrt{5 - x}. \] ### Step 3: Move all terms involving square roots to one side Rearranging the equation, we have: \[ \sqrt{5 + x} + 3\sqrt{5 - x} = 3\sqrt{5 + x} - \sqrt{5 - x}. \] ### Step 4: Combine like terms Now, let's move all terms involving \(\sqrt{5 + x}\) to one side and \(\sqrt{5 - x}\) to the other side: \[ \sqrt{5 - x} + 3\sqrt{5 - x} = 3\sqrt{5 + x} - \sqrt{5 + x}. \] This simplifies to: \[ 4\sqrt{5 - x} = 2\sqrt{5 + x}. \] ### Step 5: Simplify the equation Dividing both sides by 2 gives us: \[ 2\sqrt{5 - x} = \sqrt{5 + x}. \] ### Step 6: Square both sides Squaring both sides results in: \[ 4(5 - x) = 5 + x. \] ### Step 7: Expand and rearrange Expanding the left side gives: \[ 20 - 4x = 5 + x. \] Now, rearranging the equation to isolate \(x\): \[ 20 - 5 = x + 4x, \] which simplifies to: \[ 15 = 5x. \] ### Step 8: Solve for \(x\) Dividing both sides by 5 gives: \[ x = 3. \] Thus, the value of \(x\) is: \[ \boxed{3}. \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If sqrt(5x-6)+sqrt(5x+6)=6 then what is the value of x ?

If sqrt(4x-9) + sqrt(4x +9) = 5 +sqrt7 then what is the value of x ?

If (sqrt(x + 2) + sqrt(x-3))/(sqrt(x+2) - sqrt(x - 3)) = 5 , then the value of x is

Find x if (sqrt(5x) + sqrt(3x + 1))/(sqrt(5x) -sqrt(3x + 1)) = 9 .

If 2sqrtx= (sqrt5 + sqrt3)/(sqrt5 - sqrt3)-(sqrt5 - sqrt3)/(sqrt5 + sqrt3) then what is the value of x ?

sqrt(289) div sqrt(x) = 1/5 , then the value of x is :

int(dx)/(sqrt(x)sqrt(5-x))