Home
Class 14
MATHS
If x = (4 sqrt(ab))/(sqrt a + sqrt b) ,...

If ` x = (4 sqrt(ab))/(sqrt a + sqrt b) `, then what is the value of `(x + 2sqrt a)/(x - 2 sqrta) + (x + 2 sqrtb)/(x - 2 sqrt b) ("when " a ne b)` ?

A

0

B

2

C

4

D

`((sqrt a + sqrt b))/(( sqrt a - sqrt b))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given expression for \( x \): \[ x = \frac{4 \sqrt{ab}}{\sqrt{a} + \sqrt{b}} \] We need to find the value of: \[ \frac{x + 2\sqrt{a}}{x - 2\sqrt{a}} + \frac{x + 2\sqrt{b}}{x - 2\sqrt{b}} \] ### Step 1: Substitute \( x \) into the expression Substituting the value of \( x \) into the expression gives us: \[ \frac{\frac{4 \sqrt{ab}}{\sqrt{a} + \sqrt{b}} + 2\sqrt{a}}{\frac{4 \sqrt{ab}}{\sqrt{a} + \sqrt{b}} - 2\sqrt{a}} + \frac{\frac{4 \sqrt{ab}}{\sqrt{a} + \sqrt{b}} + 2\sqrt{b}}{\frac{4 \sqrt{ab}}{\sqrt{a} + \sqrt{b}} - 2\sqrt{b}} \] ### Step 2: Simplify the first fraction For the first fraction: \[ \frac{\frac{4 \sqrt{ab}}{\sqrt{a} + \sqrt{b}} + 2\sqrt{a}}{\frac{4 \sqrt{ab}}{\sqrt{a} + \sqrt{b}} - 2\sqrt{a}} \] Multiply the numerator and denominator by \( \sqrt{a} + \sqrt{b} \): \[ = \frac{4 \sqrt{ab} + 2\sqrt{a}(\sqrt{a} + \sqrt{b})}{4 \sqrt{ab} - 2\sqrt{a}(\sqrt{a} + \sqrt{b})} \] This simplifies to: \[ = \frac{4 \sqrt{ab} + 2a + 2\sqrt{ab}}{4 \sqrt{ab} - 2a - 2\sqrt{ab}} = \frac{6 \sqrt{ab} + 2a}{2(2 \sqrt{ab} - a - \sqrt{ab})} \] ### Step 3: Simplify the second fraction For the second fraction: \[ \frac{\frac{4 \sqrt{ab}}{\sqrt{a} + \sqrt{b}} + 2\sqrt{b}}{\frac{4 \sqrt{ab}}{\sqrt{a} + \sqrt{b}} - 2\sqrt{b}} \] Again, multiply the numerator and denominator by \( \sqrt{a} + \sqrt{b} \): \[ = \frac{4 \sqrt{ab} + 2\sqrt{b}(\sqrt{a} + \sqrt{b})}{4 \sqrt{ab} - 2\sqrt{b}(\sqrt{a} + \sqrt{b})} \] This simplifies to: \[ = \frac{4 \sqrt{ab} + 2\sqrt{ab} + 2b}{4 \sqrt{ab} - 2\sqrt{ab} - 2b} = \frac{6 \sqrt{ab} + 2b}{2(2 \sqrt{ab} - b - \sqrt{ab})} \] ### Step 4: Combine the two fractions Now we combine the two simplified fractions: \[ \frac{6 \sqrt{ab} + 2a}{2(2 \sqrt{ab} - a - \sqrt{ab})} + \frac{6 \sqrt{ab} + 2b}{2(2 \sqrt{ab} - b - \sqrt{ab})} \] ### Step 5: Find a common denominator and simplify The common denominator is: \[ 2(2 \sqrt{ab} - a - \sqrt{ab})(2 \sqrt{ab} - b - \sqrt{ab}) \] Combining the numerators leads to: \[ \frac{(6 \sqrt{ab} + 2a)(2 \sqrt{ab} - b - \sqrt{ab}) + (6 \sqrt{ab} + 2b)(2 \sqrt{ab} - a - \sqrt{ab})}{\text{common denominator}} \] ### Final Result After simplification, we find that the expression evaluates to: \[ \text{Final Answer} = 2 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

For x- (4sqrt6)/(sqrt2+sqrt3) , what is the value of (x+2sqrt2)/(x-2sqrt2)+(x+2sqrt3)/(x-2sqrt3) ?

If x gt2 then what is the value of sqrt(x+2sqrt(x-1))+sqrt(x-2sqrtx-1) ?

If x=sqrt((2+sqrt(3))/(2-sqrt(3))) ,then what is the value of (x^(2)+x-9) ?

If 1 lt x lt2 then what is the value of sqrt(x+2sqrt(x-1))+sqrt(x-2sqrt(x-1)) ?

If x=sqrt(2+sqrt(2+sqrt(2+...))) then what will be the value of x?

If 2x = sqrt(a) - (1)/(sqrt(a)) , then the value of (sqrt(x^(2) + 1))/(x + sqrt(x^(2) +1)) is

If (sqrt(x + 2) + sqrt(x-3))/(sqrt(x+2) - sqrt(x - 3)) = 5 , then the value of x is