Home
Class 14
MATHS
If tan theta + cot theta = x, then wha...

If `tan theta + cot theta = x, ` then what is the value of `tan^(4) theta + cot^(4) theta ` ?

A

`(x^(3) - 3)^(2) + 2`

B

`(x^(4) - 2 x) + 4 `

C

`x (x - 4) + 2`

D

`x^(2) (x^(2) - 4)+ 2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \tan^4 \theta + \cot^4 \theta \) given that \( \tan \theta + \cot \theta = x \), we can follow these steps: ### Step 1: Square the given equation We start with the equation: \[ \tan \theta + \cot \theta = x \] Now, we square both sides: \[ (\tan \theta + \cot \theta)^2 = x^2 \] ### Step 2: Expand the left side Using the identity \( (a + b)^2 = a^2 + b^2 + 2ab \), we can expand the left side: \[ \tan^2 \theta + \cot^2 \theta + 2 \tan \theta \cot \theta = x^2 \] Since \( \tan \theta \cot \theta = 1 \), we have: \[ \tan^2 \theta + \cot^2 \theta + 2 = x^2 \] ### Step 3: Rearrange to find \( \tan^2 \theta + \cot^2 \theta \) Rearranging the equation gives us: \[ \tan^2 \theta + \cot^2 \theta = x^2 - 2 \] ### Step 4: Square \( \tan^2 \theta + \cot^2 \theta \) Now, we square \( \tan^2 \theta + \cot^2 \theta \): \[ (\tan^2 \theta + \cot^2 \theta)^2 = (x^2 - 2)^2 \] ### Step 5: Expand the squared term Using the identity \( (a + b)^2 = a^2 + b^2 + 2ab \) again: \[ \tan^4 \theta + \cot^4 \theta + 2 \tan^2 \theta \cot^2 \theta = (x^2 - 2)^2 \] Since \( \tan^2 \theta \cot^2 \theta = 1 \), we can substitute: \[ \tan^4 \theta + \cot^4 \theta + 2 = (x^2 - 2)^2 \] ### Step 6: Rearrange to find \( \tan^4 \theta + \cot^4 \theta \) Rearranging gives us: \[ \tan^4 \theta + \cot^4 \theta = (x^2 - 2)^2 - 2 \] ### Step 7: Simplify the expression Now we simplify the right side: \[ \tan^4 \theta + \cot^4 \theta = (x^4 - 4x^2 + 4) - 2 = x^4 - 4x^2 + 2 \] ### Final Result Thus, the value of \( \tan^4 \theta + \cot^4 \theta \) is: \[ \tan^4 \theta + \cot^4 \theta = x^4 - 4x^2 + 2 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If tan theta + cot theta =2 , then what is the value of tan^7 theta + cot ^7 theta ?

tan theta+cot theta is :

If tantheta+cottheta=x , then what is the value of tan^(4)theta+cot^(4)theta ?

The value of tan^(2)theta+cot^(2)theta is

If tan theta+cot theta=4 , then find the value of tan^(4)theta+cot^(4)theta .

What is the value of tan theta xx cot theta ?

If tan theta - cot theta =7 , then the value of tan^(3)theta-cot^(3)theta is

If tan theta + cot theta = 2 then the value of tan^2 theta + cot^2 theta is

If tan theta + cot theta = 5, the value of tan^(2) theta + cot^(2) theta is :

If theta is an acute angle and tan theta + cot theta=2 , then the value of tan^(5)theta + cot^(10) theta is: