Home
Class 14
MATHS
If tan ^(2) theta + cot^(2) theta = 2 , ...

If `tan ^(2) theta + cot^(2) theta = 2 `, then what is the value of `2^(sec theta cosec theta )` ?

A

0

B

1

C

2

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given equation: **Step 1: Understand the given equation.** We have: \[ \tan^2 \theta + \cot^2 \theta = 2 \] **Step 2: Use the identity for tangent and cotangent.** Recall that: \[ \tan \theta = \frac{\sin \theta}{\cos \theta} \] \[ \cot \theta = \frac{\cos \theta}{\sin \theta} \] **Step 3: Rewrite the equation in terms of sine and cosine.** Using the identities: \[ \tan^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta} \] \[ \cot^2 \theta = \frac{\cos^2 \theta}{\sin^2 \theta} \] The equation becomes: \[ \frac{\sin^2 \theta}{\cos^2 \theta} + \frac{\cos^2 \theta}{\sin^2 \theta} = 2 \] **Step 4: Let \( x = \tan^2 \theta \).** Then, we can rewrite the equation as: \[ x + \frac{1}{x} = 2 \] **Step 5: Solve the equation.** Multiplying through by \( x \) gives: \[ x^2 - 2x + 1 = 0 \] Factoring, we find: \[ (x - 1)^2 = 0 \] Thus, \( x = 1 \) which means: \[ \tan^2 \theta = 1 \] This implies: \[ \tan \theta = 1 \] Therefore, \( \theta = 45^\circ \) (or \( \frac{\pi}{4} \) radians). **Step 6: Find secant and cosecant values.** Now, we need to find \( \sec \theta \) and \( \csc \theta \): - \( \sec 45^\circ = \frac{1}{\cos 45^\circ} = \frac{1}{\frac{1}{\sqrt{2}}} = \sqrt{2} \) - \( \csc 45^\circ = \frac{1}{\sin 45^\circ} = \frac{1}{\frac{1}{\sqrt{2}}} = \sqrt{2} \) **Step 7: Calculate \( 2^{\sec \theta \csc \theta} \).** Now we calculate: \[ \sec \theta \csc \theta = \sqrt{2} \cdot \sqrt{2} = 2 \] Thus: \[ 2^{\sec \theta \csc \theta} = 2^2 = 4 \] **Final Answer:** The value of \( 2^{\sec \theta \csc \theta} \) is \( 4 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If tan(11theta)=cot(7theta) , then what is the value of sin^2(6theta)+sec^2(9theta)+cosec^2(12theta) ?

If tan theta = 1/(sqrt(11)) and 0 < theta < pi/2 , then the value of ("cosec^2 theta - sec^2 theta)/(cosec^2 theta + sec^2 theta) is

tan 2 theta * cot theta -1= A) 2 csc theta B) sec 2 theta C) 2 sec theta D) csc 2 theta

If cosec^(2)theta+cot^(2)theta=(5)/(7) , then find the value of cosec^(4)theta-cot^(4)theta .

If sec theta + "cosec" theta = sqrt2 sec (90- theta) then what is the value of cot theta ?

If tantheta=sqrt((1)/(13))and theta is acute , then what is the value of ((cosec^(2)theta-sec^(2)theta))/(cosec^(2)theta+sec^(2)theta)) ?