Home
Class 14
MATHS
If x+((1)/(x))=2, then what is the value...

If `x+((1)/(x))=2`, then what is the value of `x^(21)+((1)/(x^(1331)))`?

A

0

B

1

C

2

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x + \frac{1}{x} = 2 \) and find the value of \( x^{21} + \frac{1}{x^{1331}} \), we can follow these steps: ### Step 1: Solve for \( x \) Given the equation: \[ x + \frac{1}{x} = 2 \] We can multiply both sides by \( x \) (assuming \( x \neq 0 \)): \[ x^2 + 1 = 2x \] Rearranging gives: \[ x^2 - 2x + 1 = 0 \] This can be factored as: \[ (x - 1)^2 = 0 \] Thus, we find: \[ x - 1 = 0 \quad \Rightarrow \quad x = 1 \] ### Step 2: Substitute \( x \) into the expression Now we need to evaluate: \[ x^{21} + \frac{1}{x^{1331}} \] Substituting \( x = 1 \): \[ 1^{21} + \frac{1}{1^{1331}} = 1 + 1 = 2 \] ### Conclusion The value of \( x^{21} + \frac{1}{x^{1331}} \) is: \[ \boxed{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If 2x-(1)/(2x)=6 then what is the value of x^(2)+(1)/(16x^(2)) ?

If x:2(1)/(3)::21:50, then what is the value of x?

If x+(1)/(x)=5 then what is the value of (x^(4)+(1)/(x^(2)))/(x^(2)-3x+1) ?

If 2x+(1)/(2x)=2 , then what is the value of sqrt(2((1)/(x))^(4)+((1)/(x))^(5)) ?

If x-(1)/(x)=1 , then what is the value of ((1)/(x-1)-(1)/(x+1)+(1)/(x^2 +1)-(1)/(x^2 -1)) ?