Home
Class 14
MATHS
What is the simplified value of [(2)/(...

What is the simplified value of
`[(2)/((cotA-tanA))]`?

A

sinA cosA

B

tan2A

C

`tan^(2)A`

D

`sin^(2)A cos^(2)A`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \(\frac{2}{\cot A - \tan A}\), we can follow these steps: ### Step 1: Rewrite cotangent and tangent We know that: \[ \cot A = \frac{1}{\tan A} \] Thus, we can rewrite the expression: \[ \cot A - \tan A = \frac{1}{\tan A} - \tan A \] ### Step 2: Find a common denominator To combine the terms, we need a common denominator, which is \(\tan A\): \[ \frac{1}{\tan A} - \tan A = \frac{1 - \tan^2 A}{\tan A} \] ### Step 3: Substitute back into the original expression Now substitute this back into the original expression: \[ \frac{2}{\cot A - \tan A} = \frac{2}{\frac{1 - \tan^2 A}{\tan A}} = 2 \cdot \frac{\tan A}{1 - \tan^2 A} \] ### Step 4: Simplify the expression Now we can simplify: \[ \frac{2 \tan A}{1 - \tan^2 A} \] ### Step 5: Recognize the identity We can use the identity \(1 - \tan^2 A = \cos^2 A - \sin^2 A\) to further simplify, but we can also recognize that: \[ \frac{2 \tan A}{1 - \tan^2 A} = \tan(2A) \] Thus, we have: \[ \frac{2 \tan A}{1 - \tan^2 A} = \tan(2A) \] ### Final Answer Therefore, the simplified value of \(\frac{2}{\cot A - \tan A}\) is: \[ \tan(2A) \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the simplified value of ((cosecA)/(cotA+tanA))^(2) ?

What is the simplified value of ((1)/(secA+tanA))^(2) ?

What is the simplified value of (1/(sec A+ tan A))^2 ?

What is the simplified value of ((cosec A)/(cot A + tan A )) ^(2) ?

What is the simplified value of (2/("cot" A/2 + "tan"A/2)) ?

What is the simplified value of ((2)/("cot"(A)/(2)+"tan"(A)/(2))) ?

What is the simplified value of (tanA)/(1-cotA)+(cotA)/(1-tanA)-(2)/(sin2A) ?

What is the simplified value of 1+cotAcot((A)/(2)) ?

What is the simplified value of ((1)/(cosectheta+cottheta))^(2) ?