Home
Class 14
MATHS
What is the simplified value of (sec^(4)...

What is the simplified value of `(sec^(4)A-tan^(2)A)-(tan^(4)A+sec^(2)A)`?

A

-1

B

`(-1)/(2)`

C

0

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( (sec^4 A - tan^2 A) - (tan^4 A + sec^2 A) \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ sec^4 A - tan^2 A - (tan^4 A + sec^2 A) \] This can be rewritten as: \[ sec^4 A - tan^2 A - tan^4 A - sec^2 A \] ### Step 2: Group the terms Now, we can group the terms: \[ (sec^4 A - sec^2 A) - (tan^4 A + tan^2 A) \] ### Step 3: Factor out common terms From the first group \( sec^4 A - sec^2 A \), we can factor out \( sec^2 A \): \[ sec^2 A (sec^2 A - 1) \] Using the identity \( sec^2 A - 1 = tan^2 A \), we can substitute: \[ sec^2 A \cdot tan^2 A \] For the second group \( tan^4 A + tan^2 A \), we can factor out \( tan^2 A \): \[ tan^2 A (tan^2 A + 1) \] Using the identity \( tan^2 A + 1 = sec^2 A \), we can substitute: \[ tan^2 A \cdot sec^2 A \] ### Step 4: Combine the factored terms Now, we can combine the factored terms: \[ sec^2 A \cdot tan^2 A - tan^2 A \cdot sec^2 A \] This simplifies to: \[ 0 \] ### Final Answer Thus, the simplified value of the original expression is: \[ \boxed{0} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the simplified value of (1/(sec A+ tan A))^2 ?

What is the simplified value of [(1+sec 2theta)tan^(2)theta]+1 ?

What is the simplified value of sec^(4)theta-sec^(2)thetatan^(2)theta ?

sec^(4)A-sec^(2)A=tan^(4)A+tan^(2)A

What is the simplified value of [ ((sec^(3)x - tan^(3)x ))/((sec x - tan x ))]-2 tan^(2)x - sec x tan x ?

What is the value of sec^(2)(tan^(-1)2)

Prove: sec^(4)A(1-sin^(4)A)-2tan^(2)A=1

int tan^(4)x sec^(2)xdx

If (sec^(4)alpha)/(sec^(2)beta)-(tan^(4)alpha)/(tan^(2)beta)=1 where alpha,betane(pi)/(2) , then find the value of (sec^(4)beta)/(sec^(2)alpha)-(tan^(4)beta)/(tan^(2)alpha)