Home
Class 12
MATHS
Let f(x) = " max " {3,x^(2),(1)/(x^(2))}...

Let `f(x) = " max " {3,x^(2),(1)/(x^(2))}` for `(1)/(2) le x le 2`. Then the value of integral `int_(1//2)^(2)f(x) dx` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f (x)= max (x,x ^(2) x ^(3)) in -2 le x le 2. Then:

Let f (x)= max (x,x ^(2) x ^(3)) in -2 le x le 2. Then:

If f(x)=max{x^(2),(1-x)^(2),(3)/(4)},x in[0,1] then the value of of int_(0)^(1)f(x)dx is

"If "f(x) ={underset(x^(2)+1.2 le x le 3)(2x+1.1 le x le 2), then evaluate int_(1)^(3) f(x) dx.

If f(x) = int_(x)^(x^(2)) (t-1)dt, 1 le x le 2 , find the greatest value of f(x).

If f(x) =int_(x)^(x^2) (t-1)dt, 1 le x le 2 then the greatest value of phi (x) , is

If g(x)=(1)/(2) [f(x)-f(-x)] defined over -3 le x le 3 and f(x)=2x^(2)-4x+1 , then the value of int_(-3)^(3)g(x)dx is -

Let f(x) ={:{(x, "for", 0 le x lt1),( 3-x,"for", 1 le x le2):} Then f(x) is