Home
Class 12
MATHS
If vec x. vec a=0, vec x. vec b=0 and v...

If ` vec x. vec a=0, vec x. vec b=0` and `vec x. vec c=0` for some non-zero vector ` vec x` , then prove that `[ vec a vec b vec c]=0.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec x.vec a=0,vec x*vec b=0 and vec x*vec c=0 for some non-zero vector vec x ,then prove that [vec avec bvec c]=0

If vec r* vec a =0 = vec r* vec b =0 and also vec r* vec c =0 for some non-zero vector vec r , then the value of vec a*(vec b xx vec c) is........

Let vec r be a non-zero vector satisfying vec r . vec a= vec r . vec b= vec r . vec c=0 for given non-zero vectors vec a , vec ba n d vec cdot Statement 1: [ vec a- vec b vec b- vec c vec c- vec a]=0 Statement 2: [ vec a vec b vec c]=0

Let vec r be a non-zero vector satisfying vec r dot vec a= vec rdot vec b= vec rdot vec c=0 for given non-zero vectors vec a , vec b and vec c dot Statement 1: [ vec a- vec b vec b- vec c vec c- vec a]=0 Statement 2: [ vec a vec b vec c]=0

Let vec r be a non-zero vector satisfying vec r dot vec a= vec rdot vec b= vec rdot vec c=0 for given non-zero vectors vec a , vec b and vec c dot Statement 1: [ vec a- vec b vec b- vec c vec c- vec a]=0 Statement 2: [ vec a vec b vec c]=0

If vec d= vec axx vec b+ vec bxx vec c+ vec cxx vec a is non-zero vector and |( vec d * vec c)( vec axx vec b)+( vec d* vec a)( vec bxx vec c)+( vec d*vec b)( vec cxx vec a)|=0, then a. | vec a|=| vec b|=| vec c| b. | vec a|+| vec b|+| vec c|=|d| c. vec a , vec b ,a n d vec c are coplanar d. none of these

If vec d= vec axx vec b+ vec bxx vec c+ vec cxx vec a is non-zero vector and |( vec d * vec c)( vec axx vec b)+( vec d* vec a)( vec bxx vec c)+( vec d*vec b)( vec cxx vec a)|=0, then a. | vec a|=| vec b|=| vec c| b. | vec a|+| vec b|+| vec c|=|d| c. vec a , vec b ,a n d vec c are coplanar d. none of these

If vec d= vec axx vec b+ vec bxx vec c+ vec cxx vec a is non-zero vector and |( vec d * vec c)( vec axx vec b)+( vec d* vec a)( vec bxx vec c)+( vec d*vec b)( vec cxx vec a)|=0, then a. | vec a|=| vec b|=| vec c| b. | vec a|+| vec b|+| vec c|=|d| c. vec a , vec b ,a n d vec c are coplanar d. none of these

If vec d= vec axx vec b+ vec bxx vec c+ vec cxx vec a is non-zero vector and |( vec d * vec c)( vec axx vec b)+( vec d* vec a)( vec bxx vec c)+( vec d*vec b)( vec cxx vec a)|=0, then a. | vec a|=| vec b|=| vec c| b. | vec a|+| vec b|+| vec c|=|d| c. vec a , vec b ,a n d vec c are coplanar d. none of these

If vec d= vec axx vec b+ vec bxx vec c+ vec cxx vec a is non-zero vector and |( vec d * vec c)( vec axx vec b)+( vec d* vec a)( vec bxx vec c)+( vec d*vec b)( vec cxx vec a)|=0, then a. | vec a|=| vec b|=| vec c| b. | vec a|+| vec b|+| vec c|=|d| c. vec a , vec b ,a n d vec c are coplanar d. none of these