Home
Class 12
MATHS
[" Question "1:" If "a,b" and "c" are un...

[" Question "1:" If "a,b" and "c" are unit vectors,then "|a-b|^(2)+|b-c|^(2)+|c-a|^(2)" does not exceed "],[" A) "4],[" B) "9],[" C) "8],[" D) "6]

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b and c are unit vectors, then the maximum value of |a-b|^(2)+|b-c|^(2)+|c-a|^(2) is?

If a, b and c are unit vectors satisfying |a-b|^(2)+|b-c|^(2)+|c-a|^(2)=9 , then |2a+5b+5x| is

If veca, vecb, vecc are unit vectors, then |veca-vecb|^2+|vecb-vecc|^2+|vecc^2-veca^2|^2 does not exceed (A) 4 (B) 9 (C) 8 (D) 6

If vec a,vec b and vec c are unit vectors,then |vec a-vec b|^(2)+|vec b-vec c|^(2)+|vec c-vec a|^(2) does not exceed 4 b.9c.8 d.6

If a, b and c are unit coplanar vectors, then [[2a-b, 2b-c, 2c-a]] is equal to

If widehat a,hat b, and hat c are unit vectors,then |widehat a-hat b|^(2)+|hat b-hat c|^(2)+|hat c-widehat a|^(2) does not exceed

If vec a, vec b, vec c are unit vectors then |vec a - vec b|^(2) + |vec b - vec c|^(2) + |vec c - vec a|^(2) does not exceed.