Home
Class 12
MATHS
int^(pi/2)log(tan x)dx=...

int^(pi/2)log(tan x)dx=

Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^(pi//2) log(tan x)dx =

Which of the following are false : Statement-I : ( int_(0)^(pi//2) (sqrt(cos x))/(sqrt(cos x + sqrt(sin x)))= pi/2 Statement-II : int_(0)^(pi//2) log(tan x) dx=1 Statement-III: int_(0)^(pi//2) log sin x dx = - pi log 2

What is the value of int_0^(pi/2)log tan x dx ?

The value of int_(0)^((pi)/(2))log(tan x)dx is equal to -

int_0^(pi//2) log(tan x) dx is :

int_(0)^((pi)/(2))log(tan x)*dx

Evaluate the following integrals int_(0)^((pi)/(2)) log(tan x)dx

Prove: int_(0)^( pi/2)log|tan x|dx=0

int_(0)^(pi//2) log (tan x ) dx=

Using integral int_(0)^(-(pi)/(2))ln(sin x)dx=-int_(0)^( pi)ln(sec x)dx=-(pi)/(2)ln2 and int_(0)^((pi)/(2))ln(tan x)dx=0 and int_(0)^((pi)/(4))ln(1+tan x)dx=(pi)/(8)