Home
Class 12
MATHS
समतल vecr*(6 hati + 2hatj + 3hatk)=7 पर ...

समतल `vecr*(6 hati + 2hatj + 3hatk)=7` पर मूल बिंदु से डाले गए लम्ब की लम्बाई क्या है ?

Promotional Banner

Similar Questions

Explore conceptually related problems

The shortest distance between the lines vecr = (2hati - hatj) + lambda(2hati + hatj - 3hatk) vecr = (hati - hatj + 2hatk) + lambda(2hati + hatj - 5hatk)

Find the angle between the pair of lines given by vecr = 2hati - 5hatj + hatk + lambda (3hati +2hatj+6hatk) and vecr =7hati - 6hatk + mu(hati +2hatj + 2hatk)

If d is the shortest distance between the lines vecr =(3hati +5hatj + 7hatk)+lambda (hati +2hatj +hatk) and vecr = (-hati -hatj-hatk)+mu(7hati-6hatj+hatk) then 125d^(2) is equal to ____________.

If d is the shortest distance between the lines vecr =(3hati +5hatj + 7hatk)+lambda (hati +2hatj +hatk) and vecr = (-hati -hatj-hatk)+mu(7hati-6hatj+hatk) then 125d^(2) is equal to ____________.

Find the value of 'lambda' if the planes vecr. (hati +2hatj+3hatk)+3=0 and vecr. (lambdahati+2hatj+7hatk) = 10 are perpendicular.

Find the value of 'lambda' if the planes vecr. (hati +2hatj+3hatk)+3=0 and vecr. (lambdahati+2hatj+7hatk) = 10 are perpendicular.

If vecr=(hati+2hatj+3hatk)+lambda(hati-hatj+hatk) and vecr=(hati+2hatj+3hatk)+mu(hati+hatj-hatk) are two lines, then the equation of acute angle bisector of two lines is