Home
Class 12
MATHS
The value of sum(n=0)^(100)i^(n!) equals...

The value of `sum_(n=0)^(100)i^(n!)` equals (where `i=sqrt(-1))`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sum_(n=0)^(10)i^(n) equals

Find the value of sum_(n=0)^(100)i^(n!), where i=sqrt(-1)

The value of sum_(n=0)^(50)i^(2n+n)! (where i=sqrt(-1)) is

The value of sum_(n=1)^(13) (i^n+i^(n+1)) , where i =sqrt(-1) equals (A) i (B) i-1 (C) -i (D) 0

The value of sum_(n=1)^(13) (i^n+i^(n+1)) , where i =sqrt(-1) equals (A) i (B) i-1 (C) -i (D) 0

The value of sum_(n=1)^(13) (i^n+i^(n+1)) , where i =sqrt(-1) equals (A) i (B) i-1 (C) -i (D) 0

The value of sum_(n=1)^(13)(i^n+i^(n+1)), " where "i = sqrt(-1) is

The value of sum sum_(n=1)^(13)(i^n+i^(n+1)) ,where i=sqrt(-1) equals

The value of sum_(k=1)^(13)(i^(n)+i^(n+1)) , where i=sqrt(-1) equals :

The value of sum_(n=1)^(13)(i^(n)+i^(n+1)), where i=sqrt(-1) equals (A)i(B)i-1(C)-i(D)0