Home
Class 12
MATHS
[" If "a sin^(-1)x-b cos^(-1)x=c," then ...

[" If "a sin^(-1)x-b cos^(-1)x=c," then the value of a "sin^(-1)x+b cos^(-1)x" (whenever exists) is equal to "],[[" 1) "0," 2) "(pi ab+c(b-a))/(a+b)," 3) "(pi)/(2)," 4) "(pi ab+c(a-b))/(a+b)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If a sin^(-1)x-b cos^(-1)x=c, then a sin^(-1)x+b cos^(-1) equal to

The value of sin(cos^(-1)x)-cos(sin^(-1)x) is

sin^(-1)x+cos^(-1)x is equal to

sin^(-1)x+cos^(-1)x is equal to

The value of cos(sin^(-1)x+cos^(-1)x) is equal to

The value of sin(cos^(-1)x)-cos(sin^(-1)x) is-

If a sin^(-1)x-b cos^(-1)x=c, then a sin^(-1)x+b cos^(-1)x is equal to (a)0(b)(pi ab+c(b-a))/(a+b)(c)(pi)/(2)(d)(pi ab+c(a-b))/(a+b)

The value of cos (sin^-1 x + cos^-1 x) is equal to :

If sin x + sin^(2) x= 1 , then the value of cos^(8) x - cos ^(4) x + 2cos^(2)x -1 is equal to :