Home
Class 12
MATHS
(dy)/(dx)=sin^(3)x cos^(2)x+xe^(x)...

(dy)/(dx)=sin^(3)x cos^(2)x+xe^(x)

Promotional Banner

Similar Questions

Explore conceptually related problems

(dy)/(dx)=sin^(8)x cos x

Solve the differential equation sin x(dy)/(dx)+y cos x=2sin^(2)x cos x

If sin y=x sin(a+y), then show that: (dy)/(dx)=(sin a)/(1-2x cos a+x^(2))

y(dy)/(dx)sin x=cos x(sin x-(y^(2))/(2)); where at x=(pi)/(2)

(dy)/(dx)=cos^(3)x backslash sin^(4)x+x backslash sqrt(2x+1)

Solve the following differential equation: (dy)/(dx)=xe^(x)-(5)/(2)+cos^(2)x

If y=(sin x-x cos x)(cos x+x sin x), show that (dy)/(dx)=x sin2x-x^(2)cos2x

int ((1+x)e^(x))/(cos^(2)( xe^(x)))dx=

inte^x(1+x)cos^2(xe^x)dx=

If y=sin^(2)x.cos^(3)x, then (dy)/(dx)