Home
Class 12
MATHS
u=int0^(pi/2)cos((2pi)/3sin^2x)dx and v=...

`u=int_0^(pi/2)cos((2pi)/3sin^2x)dx` and `v=int_0^(pi/2) cos(pi/3 sinx) dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let u=int_(0)^(pi//2)cos((2pi)/(3)sin^(2)x)dx and v=int_(0)^(pi//2)cos(pi/3sinx)dx , then the relation between u and v is a) 2u=v b) 2u=3v c) u=v d) u=2v

Suppose I_1=int_0^(pi/2)cos(pisin^2x)dx and I_2=int_0^(pi/2)cos(2pisin^2x)dx and I_3=int_0^(pi/2) cos(pi sinx)dx , then

Suppose I_1=int_0^(pi/2)cos(pisin^2x)dx and I_2=int_0^(pi/2)cos(2pisin^2x)dx and I_3=int_0^(pi/2) cos(pi sinx)dx , then

Suppose _((pi)/(2))cos(pi sin^(2)x)dx and I_(2)int_(0)^(3)cos(2 pi sin^(2)x)dx and I_(3)=int_(0)^((pi)/(2))cos(pi sin x)dx, then

int_0^(pi/2) (sinx)/(1+Cos^2x)dx

int_0^(pi//2) cos x e^(sin x) dx is :

If A=int_((rho)/(2))^((pi)/(2))cos(sin x)dxB=int_(0)^((pi)/(2))sin(cos x)dx and C=int_(0)^((pi)/(2))cos(x)dx

Evaluate int_0^(pi//2) ( cos x)/ (1+sinx) dx

int_0^(pi/2) e^(sinx).sin 2x dx =

int_0^(pi//2) x^2 cos 2x dx