Home
Class 12
MATHS
Using Lagrange's mean value theorem prov...

Using Lagrange's mean value theorem prove that if `b gt a gt 0`
`"then " (b-a)/(1+b^(2)) lt tan^(-1) b -tan^(-1) a lt (b-a)/(1+a^(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Using Lagrange's mean value theorem prove that, log (1+x) lt x ("when " x gt 0)

Using Lagranges mean value theorem,prove that |cos a-cos b|<=|a-b|

Using mean value theorem prove that for , a gt 0, bgt 0, |e^(-a)-e^(-b)| lt| a-b|

Using Largrange's mean value theorem, prove that, b^(n)-a^(n) gt n a^(n-1)(b-a)" when " b gt a .

Using Lagranges mean value theorem, prove that (b-a)/bltlog(b/a)lt(b-a)/a ,where 0ltaltb

Using Lagrange's mean value theorem prove that, (b-a)sec^(2)a lt tan b-tan a lt (b-a)sec^(2)b when 0 lt a lt b lt (pi)/(2) .

Using Lagranges mean value theorem, prove that (b-a)/bltlog(b/a)lt(b-a)/a, where 0ltaltbdot

Using Lagranges mean value theorem, prove that (b-a)/bltlog(b/a)lt(b-a)/a, where 0ltaltbdot

Using Lagranges mean value theorem, prove that (b-a)/bltlog(b/a)lt(b-a)/a="" a, where 0ltaltbdot

Using Lagrange's mean value theorem show that, (b-a)/(b) lt "log"(b)/(a) lt (b-a)/(a) , where 0 lt a lt b .