Home
Class 11
MATHS
In any DeltaABC, prove that a^(2)sin(B...

In any `DeltaABC`, prove that
`a^(2)sin(B-C)=(b^(2)-c^(2))sinA`

Promotional Banner

Similar Questions

Explore conceptually related problems

If in Delta ABC , Prove that, a^2 sin(B-C)= (b^2-c^2)sinA

In any DeltaABC prove that, a^(3)sin(B-C)+b^(3)sin(C-A)+c^(3)sin(A-B)=0 .

In any DeltaABC , prove that a(bcosC-c cosB)=(b^(2)-c^(2))

In any DeltaABC , prove that a^(3)sin(B-C)cosec^(2)A+b^(3)sin(C-A)cosec^(2)B+c^(3)sin(A-B)cosec^(2)C=0

In triangle ABC , prove that a^2sin(B-C)=(b^2-c^2)sinA .

In any DeltaABC , prove that (sin(A-B))/(sin(A+B))=(a^(2)-b^(2))/c^(2)

In any DeltaABC , prove that (sinA)/(sin(A+B))=a/c

In DeltaABC , prove that: (a^(2)sin(B-C))/(sinA) + (b^(2)sin(C-A))/(sinB)+(c^(2)sin(A-B))/(sinC)=0

In any DeltaABC, prove that : (a^2 sin (B-C))/(sin A) + (b^2 sin (C-A))/(sin B) + (c^2 sin (A-B))/(sin C) = 0

In any DeltaABC , prove that (a-b)^(2)cos^(2)(C/2)+(a+b)^(2)sin^(2)(C /2)=c^(2) .