Home
Class 11
MATHS
If m >1,n in N show that 1^m+2^m+2^(2m...

If `m >1,n in N` show that `1^m+2^m+2^(2m)+2^(3m)++2^(n m-m)> n^(1-m)(2^n-1)^mdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If m>1,n in N show that 1^(m)+2^(m)+2^(2m)+2^(3m)++2^(nm-m)>n^(1-m)(2^(n)-1)^(m)

Prove that ^m C_1^n C_m-^m C_2^(2n)C_m+^m C_3^(3n)C_m-=(-1)^(m-1)n^mdot

Prove that ^m C_1^n C_m-^m C_2^(2n)C_m+^m C_3^(3n)C_m-=(-1)^(m-1)n^mdot

Prove that ^mC_1^n C_m-^m C_2^(2n)C_m+^m C_3^(3n)C_m-.....=(-1)^(m-1)n^mdot

("lim")_(xvec 0)((2^m+x)^(1/m)-(2^n+x)^(1/n))/xi se q u a lto 1/(m2^m)-1/(n2^n) (b) 1/(m2^m)+1/(n2^n) 1/(m2^(-m))-1/(n2^(-n)) (d) 1/(m2^(-m))+1/(n2^(-n))

lim_(n to oo){(1^(m)+2^(m)+3^(m)+...+ n^(m))/(n^(m+1))} equals

The ratio of the sums of m and n terms of an A.P. is m^2 : n^2. Show that the ratio of m^(th) and n^(th) term is (2m-1) : (2n -1) .

The ratio of the sums of m and n terms of an A.P. is m^2 : n^2. Show that the ratio of m^(th) and n^(th) term is (2m-1) : (2n -1) .

IfI_(m , n)=int_0^(pi/2)sin^m xcos^n xdx , Then show that I_(m , n)=(m-1)/(m+n)I_(m-2,n)(m ,n in N) Hence, prove that I_(m , n)=f(x)={((n-1)(n-3)(m-5)(n-1)(n-3)(n-5))/((m+n)(m+n-2)(m+n-4))pi/4 when both m and n are even ((m-1)(m-3)(m-5)(n-1)(n-3)(n-5))/((m+n)(m+n-2)(m+n-4))}

IfI_(m , n)=int_0^(pi/2)sin^m xcos^n xdx , Then show that I_(m , n)=(m-1)/(m+n)I_(m-2,n)(m ,n in N) Hence, prove that I_(m , n)=f(x)={((n-1)(n-3)(m-5)(n-1)(n-3)(n-5))/((m+n)(m+n-2)(m+n-4))pi/4 when both m and n are even ((m-1)(m-3)(m-5)(n-1)(n-3)(n-5))/((m+n)(m+n-2)(m+n-4))}