Home
Class 12
MATHS
If logsqrt(x^2+y^2)=tan^-1(y/x),then dy/...

If `logsqrt(x^2+y^2)=tan^-1(y/x),then dy/dx` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If logsqrt(x^(2)+y^(2))=tan^(-1)((x)/(y)) , then show that (dy)/(dx)=(y-x)/(y+x) .

If log (x^(2)+y^(2))=tan^(-1)((y)/(x)), then show that (dy)/(dx)=(x+y)/(x-y)

If log(x^2+y^2)=2tan^(-1)(y/x), show that (dy)/(dx)=(x+y)/(x-y)

If log(x^2+y^2)=2tan^(-1)(y/x), show that (dy)/(dx)=(x+y)/(x-y)

If log(x^2+y^2)=2tan^(-1)(y/x), show that (dy)/(dx)=(x+y)/(x-y) .

Find (dy)/(dx) , when: logsqrt(x^(2)+y^(2))=tan^(-1).(y)/(x)

If y=e^(2x)tan^(-1)2x,"then " dy/dx=

If y = (1+x^(2)) tan^(-1) x -x , then dy/dx =

If log (x^(2)+y^(2)) = 2 tan ^(-1) (x/y) " then show that " (dy)/(dx) = (y-x)/(y +x)