Home
Class 11
MATHS
If |z/| barz |- barz |=1+|z|, then prove...

If `|z/| barz |- barz |=1+|z|,` then prove that `z` is a purely imaginary number.

Promotional Banner

Similar Questions

Explore conceptually related problems

If |(z)/(|bar(z)|)-bar(z)|=1+|z|, then prove that z is a purely imaginary number.

If z is a normal complex for which |z| = 1 , prove that frac (z-1)(z+1) is a purely imaginary number.

If |z+barz|+|z-barz|=2 , then z lies on

If |z + barz| + |z - barz| = 2 then z lies on

If |z+barz|+|z-barz|=8 , then z lies on

If |z+barz|+|z-barz|=2 , then z lies on

If |z+barz|+|z-barz|=8 , then z lies on

If |z + barz| + |z - barz| , then the locus of z is

If |z+barz|=|z-barz| , then value of locus of z is