Home
Class 11
MATHS
log2(4^(x+1)+4)*log2(4^x+1)=log(1sqrt(2)...

`log_2(4^(x+1)+4)*log_2(4^x+1)=log_(1sqrt(2))sqrt(1/8)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve log_2(4^(x+1)+4).log_2(4^x+1)=log_(1//sqrt2)(1/sqrt8) .

Find the number of real values of x satisfying the equation. log_(2)(4^(x+1)+4)*log_(2)(4^(x)+1)=log_(1//sqrt(2)) sqrt((1)/(8))

Find the number of real values of x satisfying the equation. log_(2)(4^(x+1)+4)*log_(2)(4^(x)+1)=log_(1//sqrt(2)) sqrt((1)/(8))

Find the number of real values of x satisfying the equation. log_(2)(4^(x+1)+4)*log_(2)(4^(x)+1)=log_(1//sqrt(2)) sqrt((1)/(8))

Solve for x :(log)_2(4(4^x+1))dotlog_2(4^x+1)=(log)_(1/(sqrt(2)))1/(sqrt(8)) .

Solve for x:log_(2)(4(4^(x)+1))*log_(2)(4^(x)+1)=log_((1)/(sqrt(3)))(1)/(sqrt(8))

If log_(2)(4^(x+1)+4)log_(2)(4^(x)+1)=log_(2)(8) then x equals what

log_(2)sqrt(x)+log_(2)sqrt(x)=4

log_(4)(x^(2)-1)-log_(4)(x-1)^(2)=log_(4)sqrt((4-x)^(2))

2log_(2)(log_(2)x)+log_((1)/(5))(log_(2)2sqrt(2x))=1