Home
Class 11
MATHS
log2(4^x+4)=log2 2^x+log2(2^(x+1)-3)...

`log_2(4^x+4)=log_2 2^x+log_2(2^(x+1)-3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

if x >0 , and log_2 x + log_2 (x^(1/2)) + log_2 (x^(1/4))+ ------------ = 4 then x equals :

if x >0 , and log_2 x + log_2 (x^(1/2)) + log_2 (x^(1/4))+ ------------ = 4 then x equals :

Solve log_2(4^(x+1)+4).log_2(4^x+1)=log_(1//sqrt2)(1/sqrt8) .

The sum of all the roots of the equation log_(2)(x-1)+log_(2)(x+2)-log_(2)(3x-1)=log_(2)4

The sum of all the roots of the equation log_(2)(x-1)+log_(2)(x+2)-log_(2)(3x-1)=log_(2)4

If log_(4) x + log_(8)x^(2) + log_(16)x^(3) = (23)/(2) , then log_(x) 8 =

Solve: log_2 (4/(x+3)) > log_2 (2-x)

Solve the following equations : (i) log_(x)(4x-3)=2 (ii) log_2(x-1)+log_(2)(x-3)=3 (iii) log_(2)(log_(8)(x^(2)-1))=0 (iv) 4^(log_(2)x)-2x-3=0

If log_(4)(log_(2)x) + log_(2) (log_(4) x) = 2 , then find log_(x)4 .

If 3^(x) = 4^(x-1) , then x = a. (2 log_(3) 2)/(2log_(3) 2-1) b. 2/(2-log_(2)3) c. 1/(1-log_(4)3) d. (2 log_(2)3)/(2 log_(2) 3-1)