Home
Class 11
MATHS
log2(2x^2)*log2(16 x)=9/2log2 2x...

`log_2(2x^2)*log_2(16 x)=9/2log2 2x`

Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt(log_(2)(2x^(2))log_(4)(16x))=log_(4)x^(3)

If log_2(sinx)-log_2(cos x)-log_2(1-tan x)-log_2(1+ tan x)=-1 then tan 2x =

(log_x2)(log_(2x)2)=log_(4x)2 n(logx 2)(log2x 2) = log4x2 is

log_(x)(9x^(2))*log_(3)^(2)(x)=4

Solve the following equation for x: 9^(log_3(log_2x))=log_2 x- (log_2 x)^2+1

If log_(4) x + log_(8)x^(2) + log_(16)x^(3) = (23)/(2) , then log_(x) 8 =

Solve : (ii) log_(x)2log_(x/16)2 = log_(x/64)2 .

If (log_(x)2)(log_((x)/(16))2)=log_((x)/(64))2

If log_2 (log_2 (log_3 x)) = log_2 (log_3 (log_2 y))=0 , then the value of (x+y) is

2log_(2)(log_(2)x)+log_((1)/(5))(log_(2)2sqrt(2x))=1