Home
Class 11
MATHS
log3(log9x+1/2+9^x)=2x...

`log_3(log_9x+1/2+9^x)=2x`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the following equations for 'x' : log_3(log_9 x+1/2 +9^x)=2x

If log_2 (log_9 x +3/2+ 8^x) = 3x, then value of 27x is equal to

log_(3) (log_(9)x + 1/2 + 9^(x)) = 2x

log_(3)(log_(9)x+(1)/(2)+9^(x))=2x

log_(3)(log_(9)x+(1)/(2)+9^(x))=2x

Solve for 'x' 9^("log"_3("log"_2x))="log"_2x-("log"_2x)^2+1

Solve the following equation for x: 9^(log_3(log_2x))=log_2 x- (log_2 x)^2+1

Solve: log_(3)(log_(3)x+(1)/(2)+9^(x))=2x

If 9^("log"_3("log"_(2) x)) = "log"_(2)x - ("log"_(2)x)^(2) + 1, then x =

Solve the following equation for x: 9^(log_(3)(log_(2)x))=log_(2)x-(log_(2)x)^(2)+1